Suppr超能文献

脑-机接口结合抑制性神经元揭示了亚型特异性策略。

Brain-Computer Interface with Inhibitory Neurons Reveals Subtype-Specific Strategies.

机构信息

Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.

Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Curr Biol. 2018 Jan 8;28(1):77-83.e4. doi: 10.1016/j.cub.2017.11.035. Epub 2017 Dec 14.

Abstract

Brain-computer interfaces have seen an increase in popularity due to their potential for direct neuroprosthetic applications for amputees and disabled individuals. Supporting this promise, animals-including humans-can learn even arbitrary mapping between the activity of cortical neurons and movement of prosthetic devices [1-4]. However, the performance of neuroprosthetic device control has been nowhere near that of limb control in healthy individuals, presenting a dire need to improve the performance. One potential limitation is the fact that previous work has not distinguished diverse cell types in the neocortex, even though different cell types possess distinct functions in cortical computations [5-7] and likely distinct capacities to control brain-computer interfaces. Here, we made a first step in addressing this issue by tracking the plastic changes of three major types of cortical inhibitory neurons (INs) during a neuron-pair operant conditioning task using two-photon imaging of IN subtypes expressing GCaMP6f. Mice were rewarded when the activity of the positive target neuron (N+) exceeded that of the negative target neuron (N-) beyond a set threshold. Mice improved performance with all subtypes, but the strategies were subtype specific. When parvalbumin (PV)-expressing INs were targeted, the activity of N- decreased. However, targeting of somatostatin (SOM)- and vasoactive intestinal peptide (VIP)-expressing INs led to an increase of the N+ activity. These results demonstrate that INs can be individually modulated in a subtype-specific manner and highlight the versatility of neural circuits in adapting to new demands by using cell-type-specific strategies.

摘要

脑机接口因其在假肢和残疾个体的直接神经假体应用方面的潜力而受到越来越多的关注。支持这一承诺,动物 - 包括人类 - 可以学习皮质神经元活动和假肢设备运动之间的任意映射[1-4]。然而,神经假体控制的性能远不及健康个体的肢体控制,迫切需要提高性能。一个潜在的限制是,以前的工作没有区分新皮层中的不同细胞类型,尽管不同的细胞类型在皮质计算中具有不同的功能[5-7],并且可能具有不同的控制脑机接口的能力。在这里,我们通过使用双光子成像 IN 亚型表达 GCaMP6f ,在神经元对操作性条件作用任务中跟踪三种主要类型的皮质抑制性神经元(INs)的可塑性变化,首次解决了这个问题。当正靶神经元(N+)的活性超过负靶神经元(N-)超过设定阈值时,老鼠会得到奖励。所有亚型的老鼠都提高了性能,但策略是特定于亚型的。当靶向表达 Parvalbumin(PV)的 INs 时,N-的活性降低。然而,靶向表达 Somatostatin(SOM)和 Vasoactive Intestinal Peptide(VIP)的 INs 导致 N+的活性增加。这些结果表明,INs 可以以亚型特异性的方式单独调节,并强调了神经回路通过使用细胞类型特异性策略来适应新需求的多功能性。

相似文献

引用本文的文献

6
Neural Plasticity in Sensorimotor Brain-Machine Interfaces.感觉运动脑机接口中的神经可塑性。
Annu Rev Biomed Eng. 2023 Jun 8;25:51-76. doi: 10.1146/annurev-bioeng-110220-110833. Epub 2023 Feb 28.
10
How learning unfolds in the brain: toward an optimization view.学习在大脑中是如何展开的:走向优化的观点。
Neuron. 2021 Dec 1;109(23):3720-3735. doi: 10.1016/j.neuron.2021.09.005. Epub 2021 Oct 13.

本文引用的文献

1
Navigating the Neural Space in Search of the Neural Code.在神经空间中导航,寻找神经密码。
Neuron. 2017 Mar 8;93(5):1003-1014. doi: 10.1016/j.neuron.2017.02.019.
3
Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits.皮质回路中表达生长抑素的抑制性中间神经元
Front Neural Circuits. 2016 Sep 29;10:76. doi: 10.3389/fncir.2016.00076. eCollection 2016.
9
Neural constraints on learning.学习中的神经限制
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验