Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.
Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
Neuron. 2021 Dec 1;109(23):3720-3735. doi: 10.1016/j.neuron.2021.09.005. Epub 2021 Oct 13.
How do changes in the brain lead to learning? To answer this question, consider an artificial neural network (ANN), where learning proceeds by optimizing a given objective or cost function. This "optimization framework" may provide new insights into how the brain learns, as many idiosyncratic features of neural activity can be recapitulated by an ANN trained to perform the same task. Nevertheless, there are key features of how neural population activity changes throughout learning that cannot be readily explained in terms of optimization and are not typically features of ANNs. Here we detail three of these features: (1) the inflexibility of neural variability throughout learning, (2) the use of multiple learning processes even during simple tasks, and (3) the presence of large task-nonspecific activity changes. We propose that understanding the role of these features in the brain will be key to describing biological learning using an optimization framework.
大脑的变化如何导致学习?为了回答这个问题,我们考虑一个人工神经网络 (ANN),其中学习是通过优化给定的目标或成本函数来进行的。这个“优化框架”可能为我们提供关于大脑如何学习的新见解,因为许多神经网络活动的特有特征可以通过一个经过训练来执行相同任务的 ANN 来再现。然而,在学习过程中,神经群体活动变化有一些关键特征不能轻易地用优化来解释,并且通常不是 ANN 的特征。在这里,我们详细介绍其中三个特征:(1) 神经变异性在整个学习过程中的不灵活性,(2) 即使在简单任务中也使用多个学习过程,(3) 存在大量与任务无关的活动变化。我们提出,理解这些特征在大脑中的作用将是使用优化框架来描述生物学习的关键。