Suppr超能文献

学习在大脑中是如何展开的:走向优化的观点。

How learning unfolds in the brain: toward an optimization view.

机构信息

Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.

Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Neuron. 2021 Dec 1;109(23):3720-3735. doi: 10.1016/j.neuron.2021.09.005. Epub 2021 Oct 13.

Abstract

How do changes in the brain lead to learning? To answer this question, consider an artificial neural network (ANN), where learning proceeds by optimizing a given objective or cost function. This "optimization framework" may provide new insights into how the brain learns, as many idiosyncratic features of neural activity can be recapitulated by an ANN trained to perform the same task. Nevertheless, there are key features of how neural population activity changes throughout learning that cannot be readily explained in terms of optimization and are not typically features of ANNs. Here we detail three of these features: (1) the inflexibility of neural variability throughout learning, (2) the use of multiple learning processes even during simple tasks, and (3) the presence of large task-nonspecific activity changes. We propose that understanding the role of these features in the brain will be key to describing biological learning using an optimization framework.

摘要

大脑的变化如何导致学习?为了回答这个问题,我们考虑一个人工神经网络 (ANN),其中学习是通过优化给定的目标或成本函数来进行的。这个“优化框架”可能为我们提供关于大脑如何学习的新见解,因为许多神经网络活动的特有特征可以通过一个经过训练来执行相同任务的 ANN 来再现。然而,在学习过程中,神经群体活动变化有一些关键特征不能轻易地用优化来解释,并且通常不是 ANN 的特征。在这里,我们详细介绍其中三个特征:(1) 神经变异性在整个学习过程中的不灵活性,(2) 即使在简单任务中也使用多个学习过程,(3) 存在大量与任务无关的活动变化。我们提出,理解这些特征在大脑中的作用将是使用优化框架来描述生物学习的关键。

相似文献

1
How learning unfolds in the brain: toward an optimization view.学习在大脑中是如何展开的:走向优化的观点。
Neuron. 2021 Dec 1;109(23):3720-3735. doi: 10.1016/j.neuron.2021.09.005. Epub 2021 Oct 13.
2
Rethinking the performance comparison between SNNS and ANNS.重新思考 SNNS 和 ANNS 的性能比较。
Neural Netw. 2020 Jan;121:294-307. doi: 10.1016/j.neunet.2019.09.005. Epub 2019 Sep 19.
7
Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization.利用上下文相关门控和突触稳定缓解灾难性遗忘。
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10467-E10475. doi: 10.1073/pnas.1803839115. Epub 2018 Oct 12.
9
Uncertainty in the output of artificial neural networks.人工神经网络输出中的不确定性。
IEEE Trans Med Imaging. 2003 Jul;22(7):913-21. doi: 10.1109/TMI.2003.815061.

引用本文的文献

2
De novo sensorimotor learning through reuse of movement components.通过重复使用运动成分进行新的感觉运动学习。
PLoS Comput Biol. 2024 Oct 10;20(10):e1012492. doi: 10.1371/journal.pcbi.1012492. eCollection 2024 Oct.
6
Learning leaves a memory trace in motor cortex.学习在运动皮层中留下记忆痕迹。
Curr Biol. 2024 Apr 8;34(7):1519-1531.e4. doi: 10.1016/j.cub.2024.03.003. Epub 2024 Mar 25.
7
Developmental changes in exploration resemble stochastic optimization.探索过程中的发展变化类似于随机优化。
Nat Hum Behav. 2023 Nov;7(11):1955-1967. doi: 10.1038/s41562-023-01662-1. Epub 2023 Aug 17.

本文引用的文献

6
Representational drift in primary olfactory cortex.初级嗅觉皮层中的表征漂移。
Nature. 2021 Jun;594(7864):541-546. doi: 10.1038/s41586-021-03628-7. Epub 2021 Jun 9.
7
Learning is shaped by abrupt changes in neural engagement.学习受到神经活动突然变化的影响。
Nat Neurosci. 2021 May;24(5):727-736. doi: 10.1038/s41593-021-00822-8. Epub 2021 Mar 29.
10
Neural manifold under plasticity in a goal driven learning behaviour.在目标驱动的学习行为中,神经流形下的可塑性。
PLoS Comput Biol. 2021 Feb 5;17(2):e1008621. doi: 10.1371/journal.pcbi.1008621. eCollection 2021 Feb.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验