Suppr超能文献

使用生成性血液动力学模型从多模态功能磁共振成像数据中确定兴奋性和抑制性神经元活动。

Determining Excitatory and Inhibitory Neuronal Activity from Multimodal fMRI Data Using a Generative Hemodynamic Model.

作者信息

Havlicek Martin, Ivanov Dimo, Roebroeck Alard, Uludağ Kamil

机构信息

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.

出版信息

Front Neurosci. 2017 Nov 10;11:616. doi: 10.3389/fnins.2017.00616. eCollection 2017.

Abstract

Hemodynamic responses, in general, and the blood oxygenation level-dependent (BOLD) fMRI signal, in particular, provide an indirect measure of neuronal activity. There is strong evidence that the BOLD response correlates well with post-synaptic changes, induced by changes in the excitatory and inhibitory (E-I) balance between active neuronal populations. Typical BOLD responses exhibit transients, such as the early-overshoot and post-stimulus undershoot, that can be linked to transients in neuronal activity, but they can also result from vascular uncoupling between cerebral blood flow (CBF) and venous cerebral blood volume (venous CBV). Recently, we have proposed a novel generative hemodynamic model of the BOLD signal within the dynamic causal modeling framework, inspired by physiological observations, called P-DCM (Havlicek et al., 2015). We demonstrated the generative model's ability to more accurately model commonly observed neuronal and vascular transients in single regions but also effective connectivity between multiple brain areas (Havlicek et al., 2017b). In this paper, we additionally demonstrate the versatility of the generative model to jointly explain dynamic relationships between neuronal and hemodynamic physiological variables underlying the BOLD signal using multi-modal data. For this purpose, we utilized three distinct data-sets of experimentally induced responses in the primary visual areas measured in human, cat, and monkey brain, respectively: (1) CBF and BOLD responses; (2) CBF, total CBV, and BOLD responses (Jin and Kim, 2008); and (3) positive and negative neuronal and BOLD responses (Shmuel et al., 2006). By fitting the generative model to the three multi-modal experimental data-sets, we showed that the presence or absence of dynamic features in the BOLD signal is not an unambiguous indication of presence or absence of those features on the neuronal level. Nevertheless, the generative model that takes into account the dynamics of the physiological mechanisms underlying the BOLD response allowed dissociating neuronal from vascular transients and deducing excitatory and inhibitory neuronal activity time-courses from BOLD data alone and from multi-modal data.

摘要

一般来说,血流动力学反应,尤其是血氧水平依赖(BOLD)功能磁共振成像信号,提供了一种间接测量神经元活动的方法。有强有力的证据表明,BOLD反应与由活跃神经元群体之间兴奋性和抑制性(E-I)平衡变化所诱导的突触后变化密切相关。典型的BOLD反应表现出瞬态,如早期过冲和刺激后下冲,这些瞬态可与神经元活动的瞬态相关联,但它们也可能源于脑血流量(CBF)和静脉脑血容量(静脉CBV)之间的血管解耦。最近,受生理学观察启发,我们在动态因果建模框架内提出了一种新的BOLD信号生成血流动力学模型,称为P-DCM(哈夫利切克等人,2015年)。我们证明了生成模型能够更准确地模拟单个区域中常见的神经元和血管瞬态,以及多个脑区之间的有效连接(哈夫利切克等人,2017b)。在本文中,我们还展示了生成模型的通用性,即使用多模态数据联合解释BOLD信号背后神经元和血流动力学生理变量之间的动态关系。为此,我们分别利用了在人类、猫和猴脑中测量的初级视觉区域实验诱导反应的三个不同数据集:(1)CBF和BOLD反应;(2)CBF、总CBV和BOLD反应(金和金,2008年);以及(3)正向和负向神经元及BOLD反应(施穆埃尔等人,2006年)。通过将生成模型拟合到这三个多模态实验数据集,我们表明BOLD信号中动态特征的存在与否并非神经元水平上这些特征存在与否的明确指示。然而,考虑到BOLD反应背后生理机制动态的生成模型能够将神经元瞬态与血管瞬态区分开来,并仅从BOLD数据以及多模态数据中推断出兴奋性和抑制性神经元活动的时间进程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2dc/5715391/e50f55e391cb/fnins-11-00616-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验