Suppr超能文献

比较校正基于行政数据库诊断代码的分类偏倚的方法。

A comparison of methods to correct for misclassification bias from administrative database diagnostic codes.

机构信息

Departments of Medicine and Epidemiology & Community Medicine, University of Ottawa, ASB1-003 1053, Carling Ave, Ottawa ON, K1Y 4E9, Canada.

出版信息

Int J Epidemiol. 2018 Apr 1;47(2):605-616. doi: 10.1093/ije/dyx253.

Abstract

BACKGROUND

In administrative database research, misclassification bias can result from diagnostic codes that imperfectly represent the condition being studied. It is unclear how to correct for this bias.

METHODS

Severe renal failure and Colles' fracture status were determined in two distinct cohorts using gold standard methods. True disease prevalence and disease association with other covariables were measured and compared with results when disease status was determined using diagnostic codes. Differences ('misclassification bias') were then adjusted for using two methods: quantitative bias analysis (QBA) with bias parameters (code sensitivity and specificity) of varying accuracy; and disease status imputation using bootstrap methods and disease probability models.

RESULTS

Prevalences of severe renal failure (n = 50 074) and Colles' fracture (n = 5680) were 7.5% and 37.0%, respectively. Compared with true values, important bias resulted when diagnostic codes were used to measure disease prevalence and disease-covariable associations. QBA increased bias when population-based (vs strata-specific) bias parameters were used. QBA's ability to account for misclassification bias was most dependent upon deviations in code specificity. Bootstrap imputation accounted for misclassification bias, but this depended on disease model calibration.

CONCLUSIONS

Extensive bias can result from using inaccurate diagnostic codes to determine disease status. This bias can be addressed with QBA using accurate bias parameter measures, or by bootstrap imputation using well-calibrated disease prediction models.

摘要

背景

在行政数据库研究中,诊断代码可能无法完美地代表所研究的疾病,从而导致分类错误偏倚。目前尚不清楚如何纠正这种偏倚。

方法

使用金标准方法在两个不同队列中确定严重肾衰竭和科雷氏骨折的状态。通过诊断代码确定疾病状态时,测量并比较真实疾病流行率和疾病与其他协变量的相关性。然后使用两种方法对差异(“分类错误偏倚”)进行调整:使用具有不同准确性的偏置参数(代码灵敏度和特异性)的定量偏倚分析(QBA);以及使用 bootstrap 方法和疾病概率模型进行疾病状态推断。

结果

严重肾衰竭(n=50074)和科雷氏骨折(n=5680)的患病率分别为 7.5%和 37.0%。与真实值相比,使用诊断代码来衡量疾病流行率和疾病与协变量的关联会产生重要的偏倚。当使用基于人群的(而非分层特异性)偏置参数时,QBA 会增加偏倚。QBA 纠正分类错误偏倚的能力主要取决于代码特异性的偏差。bootstrap 推断可以纠正分类错误偏倚,但这取决于疾病模型的校准。

结论

使用不准确的诊断代码来确定疾病状态可能会导致严重的偏倚。可以使用准确的偏置参数测量值通过 QBA 来解决这种偏倚,也可以使用经过良好校准的疾病预测模型进行 bootstrap 推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验