Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain.
Nat Chem. 2017 Oct 23;10(1):78-84. doi: 10.1038/nchem.2875.
Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data to show that truncated rhombic dodecahedral particles of the metal-organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals. Those superstructures feature a photonic bandgap that can be tuned by controlling the size of the ZIF-8 particles and is also responsive to the adsorption of guest substances in the micropores of the ZIF-8 particles. In addition, superstructures with different lattices can also be assembled by tuning the truncation of ZIF-8 particles, or by using octahedral UiO-66 MOF particles instead. These well-ordered, sub-micrometre-sized superstructures might ultimately facilitate the design of three-dimensional photonic materials for applications in sensing.
颗粒的自组装形成长程、三维、有序的超结构对于设计各种材料至关重要,包括等离子体传感材料、能源或气体储存系统、催化剂和光子晶体。在这里,我们结合实验和模拟数据表明,金属有机骨架(MOF)ZIF-8 的截角八面体颗粒可以自组装成具有三维菱形晶格的毫米级超结构,这些超结构表现为光子晶体。这些超结构具有可以通过控制 ZIF-8 颗粒的大小来调节的光子带隙,并且对 ZIF-8 颗粒微孔中吸附的客体物质也有响应。此外,通过调整 ZIF-8 颗粒的截断,或使用八面体 UiO-66 MOF 颗粒代替,也可以组装具有不同晶格的超结构。这些有序的、亚微米级的超结构最终可能有助于设计用于传感的三维光子材料。