CBMN Laboratory, Université de Bordeaux, CNRS, IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600 Pessac, France.
Nat Chem. 2018 Jan;10(1):51-57. doi: 10.1038/nchem.2854. Epub 2017 Sep 18.
Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.
非生物折叠体,即骨架与肽和核苷酸骨架在化学上相隔的折叠体,可能会获得与肽和核苷酸不同的形状和功能。然而,针对非生物三级和四级结构的设计方法尚未开发。在这里,我们报告了合理设计的相互作用模式,以指导非生物螺旋束的折叠和组装。计算设计促进了在芳酰胺骨架上的指定位置引入氢键功能,从而在有机溶剂中促进协同折叠成螺旋-转角-螺旋模体。由氢键导向的螺旋聚集,这些螺旋没有通过转角单元连接,产生了几个热力学和动力学稳定的同手性二聚体和三聚体束,其结构与设计的螺旋-转角-螺旋不同。在细微的溶剂变化下,束内相对螺旋取向可以从平行变为倾斜。总之,这些结果预示着非生物三级结构行为的丰富性和独特性。