Suppr超能文献

美国手机用户的健康应用使用情况:按慢性病状况分析趋势

Health App Use Among US Mobile Phone Users: Analysis of Trends by Chronic Disease Status.

作者信息

Robbins Rebecca, Krebs Paul, Jagannathan Ram, Jean-Louis Girardin, Duncan Dustin T

机构信息

Department of Population Health, NYU School of Medicine, New York, NY, United States.

Emory Global Diabetes Research Center, Hubert Department of Global Health, Emory Rollins College of Public Health, Atlanta, GA, United States.

出版信息

JMIR Mhealth Uhealth. 2017 Dec 19;5(12):e197. doi: 10.2196/mhealth.7832.

Abstract

BACKGROUND

Mobile apps hold promise for serving as a lifestyle intervention in public health to promote wellness and attenuate chronic conditions, yet little is known about how individuals with chronic illness use or perceive mobile apps.

OBJECTIVE

The objective of this study was to explore behaviors and perceptions about mobile phone-based apps for health among individuals with chronic conditions.

METHODS

Data were collected from a national cross-sectional survey of 1604 mobile phone users in the United States that assessed mHealth use, beliefs, and preferences. This study examined health app use, reason for download, and perceived efficacy by chronic condition.

RESULTS

Among participants, having between 1 and 5 apps was reported by 38.9% (314/807) of respondents without a condition and by 6.6% (24/364) of respondents with hypertension. Use of health apps was reported 2 times or more per day by 21.3% (172/807) of respondents without a condition, 2.7% (10/364) with hypertension, 13.1% (26/198) with obesity, 12.3% (20/163) with diabetes, 12.0% (32/267) with depression, and 16.6% (53/319) with high cholesterol. Results of the logistic regression did not indicate a significant difference in health app download between individuals with and without chronic conditions (P>.05). Compared with individuals with poor health, health app download was more likely among those with self-reported very good health (odds ratio [OR] 3.80, 95% CI 2.38-6.09, P<.001) and excellent health (OR 4.77, 95% CI 2.70-8.42, P<.001). Similarly, compared with individuals who report never or rarely engaging in physical activity, health app download was more likely among those who report exercise 1 day per week (OR 2.47, 95% CI 1.6-3.83, P<.001), 2 days per week (OR 4.77, 95% CI 3.27-6.94, P<.001), 3 to 4 days per week (OR 5.00, 95% CI 3.52-7.10, P<.001), and 5 to 7 days per week (OR 4.64, 95% CI 3.11-6.92, P<.001). All logistic regression results controlled for age, sex, and race or ethnicity.

CONCLUSIONS

Results from this study suggest that individuals with poor self-reported health and low rates of physical activity, arguably those who stand to benefit most from health apps, were least likely to report download and use these health tools.

摘要

背景

移动应用有望成为公共卫生领域的一种生活方式干预手段,以促进健康并缓解慢性病,但对于慢性病患者如何使用或看待移动应用却知之甚少。

目的

本研究的目的是探讨慢性病患者对基于手机的健康应用的行为和看法。

方法

数据来自对美国1604名手机用户的全国性横断面调查,该调查评估了移动健康的使用情况、信念和偏好。本研究考察了健康应用的使用情况、下载原因以及按慢性病类型划分的感知疗效。

结果

在参与者中,无疾病的受访者中有38.9%(314/807)报告拥有1至5个应用,患有高血压的受访者中有6.6%(24/364)报告拥有1至5个应用。无疾病的受访者中有21.3%(172/807)报告每天使用健康应用2次或更多次,患有高血压的受访者中有2.7%(10/364),患有肥胖症的受访者中有13.1%(26/198),患有糖尿病的受访者中有12.3%(20/163),患有抑郁症的受访者中有12.0%(32/267),患有高胆固醇的受访者中有16.6%(53/319)。逻辑回归结果表明,慢性病患者和非慢性病患者在健康应用下载方面没有显著差异(P>.05)。与健康状况较差的个体相比,自我报告健康状况非常好的个体更有可能下载健康应用(优势比[OR]3.80,95%置信区间2.38 - 6.09,P<.001),健康状况极佳的个体更有可能下载健康应用(OR 4.77,95%置信区间2.70 - 8.42,P<.001)。同样,与报告从不或很少进行体育活动的个体相比,报告每周锻炼1天的个体更有可能下载健康应用(OR 2.47,95%置信区间1.6 - 3.83,P<.001),每周锻炼2天的个体(OR 4.77,95%置信区间3.27 - 6.94,P<.001),每周锻炼3至4天的个体(OR 5.00,95%置信区间3.52 - 7.10,P<.001),以及每周锻炼5至7天的个体(OR 4.64,95%置信区间3.11 - 6.92,P<.001)。所有逻辑回归结果均对年龄、性别和种族或民族进行了控制。

结论

本研究结果表明,自我报告健康状况较差且体育活动率较低的个体,按理说那些最有可能从健康应用中受益的人,报告下载和使用这些健康工具的可能性最小。

相似文献

1
Health App Use Among US Mobile Phone Users: Analysis of Trends by Chronic Disease Status.
JMIR Mhealth Uhealth. 2017 Dec 19;5(12):e197. doi: 10.2196/mhealth.7832.
4
Who Uses Mobile Phone Health Apps and Does Use Matter? A Secondary Data Analytics Approach.
J Med Internet Res. 2017 Apr 19;19(4):e125. doi: 10.2196/jmir.5604.
8
Nurses' Use of mHealth Apps for Chronic Conditions: Cross-Sectional Survey.
JMIR Nurs. 2024 May 29;7:e57668. doi: 10.2196/57668.
10
Mobile health (m-health) smartphone interventions for adolescents and adults with overweight or obesity.
Cochrane Database Syst Rev. 2024 Feb 20;2(2):CD013591. doi: 10.1002/14651858.CD013591.pub2.

引用本文的文献

3
Epilepsy control during an epidemic: emerging approaches and a new management framework.
Acta Epileptol. 2020 May 12;2:6. doi: 10.1186/s42494-020-00015-z. eCollection 2020.
5
Mobile Admission Process and Administrative Turnaround Time for Hospitalization of Outpatients: A Retrospective Study.
Appl Clin Inform. 2025 Aug;16(4):769-776. doi: 10.1055/a-2576-7110. Epub 2025 Apr 9.
6
Persian adaptation and validation of the user version of The Mobile Application Rating Scale (uMARS).
PLoS One. 2025 Apr 2;20(4):e0320349. doi: 10.1371/journal.pone.0320349. eCollection 2025.
8
Evaluating mobile apps for sun protection: content analysis and user preferences in a two-part study.
Health Psychol Behav Med. 2025 Jan 27;13(1):2456659. doi: 10.1080/21642850.2025.2456659. eCollection 2025.

本文引用的文献

1
The impact of post-adoption beliefs on the continued use of health apps.
Int J Med Inform. 2016 Mar;87:75-83. doi: 10.1016/j.ijmedinf.2015.12.016. Epub 2015 Dec 30.
2
The Most Popular Smartphone Apps for Weight Loss: A Quality Assessment.
JMIR Mhealth Uhealth. 2015 Dec 16;3(4):e104. doi: 10.2196/mhealth.4334.
3
Health App Use Among US Mobile Phone Owners: A National Survey.
JMIR Mhealth Uhealth. 2015 Nov 4;3(4):e101. doi: 10.2196/mhealth.4924.
4
Recent Evidence for Emerging Digital Technologies to Support Global HIV Engagement in Care.
Curr HIV/AIDS Rep. 2015 Dec;12(4):451-61. doi: 10.1007/s11904-015-0291-7.
5
Behavioral functionality of mobile apps in health interventions: a systematic review of the literature.
JMIR Mhealth Uhealth. 2015 Feb 26;3(1):e20. doi: 10.2196/mhealth.3335.
6
Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment.
Lancet Glob Health. 2015 Mar;3(3):e132-42. doi: 10.1016/S2214-109X(14)70381-X.
8
mHealth for Smoking Cessation Programs: A Systematic Review.
J Pers Med. 2014 Jul 18;4(3):412-23. doi: 10.3390/jpm4030412.
9
Current mHealth technologies for physical activity assessment and promotion.
Am J Prev Med. 2013 Oct;45(4):501-7. doi: 10.1016/j.amepre.2013.05.012.
10
Mobile health technology evaluation: the mHealth evidence workshop.
Am J Prev Med. 2013 Aug;45(2):228-36. doi: 10.1016/j.amepre.2013.03.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验