From the Pediatric Nutritional Medicine, Klinikum rechts der Isar (MRI), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin.
Department of Biosciences and Center for Integrated Protein Science Munich, and.
J Biol Chem. 2018 Feb 9;293(6):2115-2124. doi: 10.1074/jbc.RA117.001442. Epub 2017 Dec 19.
Intestinal fructose uptake is mainly mediated by glucose transporter 5 (GLUT5/SLC2A5). Its closest relative, GLUT7, is also expressed in the intestine but does not transport fructose. For rat Glut5, a change of glutamine to glutamic acid at codon 166 (p.Q166E) has been reported to alter the substrate-binding specificity by shifting Glut5-mediated transport from fructose to glucose. Using chimeric proteins of GLUT5 and GLUT7, here we identified amino acid residues of GLUT5 that define its substrate specificity. The proteins were expressed in NIH-3T3 fibroblasts, and their activities were determined by fructose radiotracer flux. We divided the human GLUT5 sequence into 26 fragments and then replaced each fragment with the corresponding region in GLUT7. All fragments that yielded reduced fructose uptake were analyzed further by assessing the role of individual amino acid residues. Various positions in the first extracellular loop, in the fifth, seventh, eighth, ninth, and tenth transmembrane domains (TMDs), and in the regions between the ninth and tenth TMDs and tenth and 11th TMDs were identified as being important for proper fructose uptake. Although the p.Q167E change did not render the human protein into a glucose transporter, molecular dynamics simulations revealed a drastic change in the dynamics and a movement of the intracellular loop connecting the sixth and seventh TMDs, which covers the exit of the ligand. Finally, we generated a GLUT7-GLUT5 chimera consisting of the N-terminal part of GLUT7 and the C-terminal part of GLUT5. Although this chimera was inactive, we demonstrate fructose transport after introduction of four amino acids derived from GLUT5.
肠道果糖摄取主要由葡萄糖转运蛋白 5 (GLUT5/SLC2A5)介导。其最接近的同源物 GLUT7 也在肠道中表达,但不转运果糖。对于大鼠 Glut5,已经报道了密码子 166 处的谷氨酰胺到谷氨酸的变化(p.Q166E)通过将 Glut5 介导的转运从果糖转变为葡萄糖来改变底物结合特异性。使用 GLUT5 和 GLUT7 的嵌合蛋白,我们在这里确定了定义 GLUT5 底物特异性的 GLUT5 氨基酸残基。这些蛋白在 NIH-3T3 成纤维细胞中表达,并通过果糖放射性示踪剂通量测定其活性。我们将人 GLUT5 序列分为 26 个片段,然后用 GLUT7 的相应区域替换每个片段。所有导致果糖摄取减少的片段都通过评估单个氨基酸残基的作用进一步进行分析。在第一细胞外环、第五、第七、第八、第九和第十跨膜域 (TMD) 以及第九和第十 TMD 之间以及第十和第十一个 TMD 之间的区域中的各种位置被确定为对适当的果糖摄取很重要。虽然 p.Q167E 变化并没有使人类蛋白成为葡萄糖转运蛋白,但分子动力学模拟显示动态发生了剧烈变化,并且连接第六和第七 TMD 的细胞内环发生了运动,该环覆盖了配体的出口。最后,我们生成了由 GLUT7 的 N 端部分和 GLUT5 的 C 端部分组成的 GLUT7-GLUT5 嵌合体。尽管该嵌合体没有活性,但我们证明在引入源自 GLUT5 的四个氨基酸后可以进行果糖转运。