Suppr超能文献

是什么促成了一个有效的甘露糖识别结构域?

What contributes to an effective mannose recognition domain?

作者信息

Sager Christoph P, Eriş Deniz, Smieško Martin, Hevey Rachel, Ernst Beat

机构信息

Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.

出版信息

Beilstein J Org Chem. 2017 Dec 4;13:2584-2595. doi: 10.3762/bjoc.13.255. eCollection 2017.

Abstract

In general, carbohydrate-lectin interactions are characterized by high specificity but also low affinity. The main reason for the low affinities are desolvation costs, due to the numerous hydroxy groups present on the ligand, together with the typically polar surface of the binding sites. Nonetheless, nature has evolved strategies to overcome this hurdle, most prominently in relation to carbohydrate-lectin interactions of the innate immune system but also in bacterial adhesion, a process key for the bacterium's survival. In an effort to better understand the particular characteristics, which contribute to a successful carbohydrate recognition domain, the mannose-binding sites of six C-type lectins and of three bacterial adhesins were analyzed. One important finding is that the high enthalpic penalties caused by desolvation can only be compensated for by the number and quality of hydrogen bonds formed by each of the polar hydroxy groups engaged in the binding process. In addition, since mammalian mannose-binding sites are in general flat and solvent exposed, the half-lives of carbohydrate-lectin complexes are rather short since water molecules can easily access and displace the ligand from the binding site. In contrast, the bacterial lectin FimH benefits from a deep mannose-binding site, leading to a substantial improvement in the off-rate. Together with both a catch-bond mechanism (i.e., improvement of affinity under shear stress) and multivalency, two methods commonly utilized by pathogens, the affinity of the carbohydrate-FimH interaction can be further improved. Including those just described, the various approaches explored by nature to optimize selectivity and affinity of carbohydrate-lectin interactions offer interesting therapeutic perspectives for the development of carbohydrate-based drugs.

摘要

一般来说,碳水化合物与凝集素的相互作用具有高特异性但亲和力低的特点。亲和力低的主要原因是去溶剂化成本,这是由于配体上存在大量羟基以及结合位点通常具有极性表面。尽管如此,自然界已经进化出克服这一障碍的策略,最显著的是在先天免疫系统的碳水化合物与凝集素相互作用方面,也包括细菌黏附,这是细菌生存的关键过程。为了更好地理解有助于成功的碳水化合物识别结构域的特定特征,分析了六种C型凝集素和三种细菌黏附素的甘露糖结合位点。一个重要发现是,去溶剂化引起的高焓罚只能通过参与结合过程的每个极性羟基形成的氢键数量和质量来补偿。此外,由于哺乳动物的甘露糖结合位点通常是平坦且暴露于溶剂中的,碳水化合物与凝集素复合物的半衰期相当短,因为水分子可以很容易地进入并将配体从结合位点取代。相比之下,细菌凝集素FimH受益于一个深的甘露糖结合位点,导致解离速率有显著改善。再加上病原体常用的两种方法——捕获键机制(即在剪切应力下提高亲和力)和多价性,碳水化合物与FimH相互作用的亲和力可以进一步提高。包括刚刚描述的那些,自然界探索的各种优化碳水化合物与凝集素相互作用的选择性和亲和力的方法为基于碳水化合物的药物开发提供了有趣的治疗前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验