Suppr超能文献

微生物代谢直接影响(亚)极地积雪中的微量气体。

Microbial metabolism directly affects trace gases in (sub) polar snowpacks.

机构信息

Department of Biology, University of York, York, North Yorkshire, UK

Department of Biology, University of York, York, North Yorkshire, UK.

出版信息

J R Soc Interface. 2017 Dec;14(137). doi: 10.1098/rsif.2017.0729.

Abstract

Concentrations of trace gases trapped in ice are considered to develop uniquely from direct snow/atmosphere interactions at the time of contact. This assumption relies upon limited or no biological, chemical or physical transformations occurring during transition from snow to firn to ice; a process that can take decades to complete. Here, we present the first evidence of environmental alteration due to microbial metabolism of trace gases (methyl halides and dimethyl sulfide) in polar snow. We collected evidence for ongoing microbial metabolism from an Arctic and an Antarctic location during different years. Methyl iodide production in the snowpack decreased significantly after exposure to enhanced UV radiation. Our results also show large variations in the production and consumption of other methyl halides, including methyl bromide and methyl chloride, used in climate interpretations. These results suggest that this long-neglected microbial activity could constitute a potential source of error in climate history interpretations, by introducing a so far unappreciated source of bias in the quantification of atmospheric-derived trace gases trapped within the polar ice caps.

摘要

被困在冰中的痕量气体的浓度被认为是在接触时直接通过雪-气相互作用而独特形成的。这一假设依赖于在从雪到粒雪再到冰的转变过程中几乎没有或没有发生生物、化学或物理转化;这个过程可能需要几十年才能完成。在这里,我们首次提供了由于痕量气体(甲基卤化物和二甲基硫)在极地雪中的微生物代谢导致环境变化的证据。我们在不同年份从北极和南极地点收集了正在进行的微生物代谢的证据。在暴露于增强的紫外线辐射后,雪层中的碘化甲基的生成量显著减少。我们的结果还表明,其他甲基卤化物(包括在气候解释中使用的甲基溴化物和一氯甲烷)的产生和消耗存在很大差异。这些结果表明,这种长期被忽视的微生物活动可能会导致在气候历史解释中引入一个潜在的误差源,因为它在极地冰盖内捕获的源自大气的痕量气体的量化中引入了一个迄今未被认识到的偏差源。

相似文献

1
Microbial metabolism directly affects trace gases in (sub) polar snowpacks.
J R Soc Interface. 2017 Dec;14(137). doi: 10.1098/rsif.2017.0729.
2
Chemistry: Ten things we need to know about ice and snow.
Nature. 2013 Feb 7;494(7435):27-9. doi: 10.1038/494027a.
4
Emissions of methyl halides and methane from rice paddies.
Science. 2000 Nov 3;290(5493):966-9. doi: 10.1126/science.290.5493.966.
5
Microbial mercury methylation in Antarctic sea ice.
Nat Microbiol. 2016 Aug 1;1(10):16127. doi: 10.1038/nmicrobiol.2016.127.
6
Free amino acids in the Arctic snow and ice core samples: Potential markers for paleoclimatic studies.
Sci Total Environ. 2017 Dec 31;607-608:454-462. doi: 10.1016/j.scitotenv.2017.07.041. Epub 2017 Jul 27.
7
Atmospheric chemistry. Better budgets for methyl halides.
Nature. 2000 Jan 20;403(6767):260-1. doi: 10.1038/35002232.
9
Pre-industrial and recent (1970-2010) atmospheric deposition of sulfate and mercury in snow on southern Baffin Island, Arctic Canada.
Sci Total Environ. 2015 Mar 15;509-510:104-14. doi: 10.1016/j.scitotenv.2014.04.092. Epub 2014 May 16.

引用本文的文献

1
Crucial stepping stones in freshwater microbiology.
Nat Microbiol. 2025 Jan;10(1):6-7. doi: 10.1038/s41564-024-01898-1.
2
Brief survey on organometalated antibacterial drugs and metal-based materials with antibacterial activity.
RSC Chem Biol. 2021 Jan 26;2(2):368-386. doi: 10.1039/d0cb00218f. eCollection 2021 Apr 1.
3
Microbial genomics amidst the Arctic crisis.
Microb Genom. 2020 May;6(5). doi: 10.1099/mgen.0.000375. Epub 2020 May 11.
4
Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry?
Microorganisms. 2019 Aug 14;7(8):260. doi: 10.3390/microorganisms7080260.

本文引用的文献

1
Aerobiology Over Antarctica - A New Initiative for Atmospheric Ecology.
Front Microbiol. 2016 Feb 16;7:16. doi: 10.3389/fmicb.2016.00016. eCollection 2016.
2
Snow surface microbiome on the High Antarctic Plateau (DOME C).
PLoS One. 2014 Aug 7;9(8):e104505. doi: 10.1371/journal.pone.0104505. eCollection 2014.
4
The dynamic arctic snow pack: an unexplored environment for microbial diversity and activity.
Biology (Basel). 2013 Feb 5;2(1):317-30. doi: 10.3390/biology2010317.
5
Spatial ecology of bacteria at the microscale in soil.
PLoS One. 2014 Jan 28;9(1):e87217. doi: 10.1371/journal.pone.0087217. eCollection 2014.
6
The dynamic bacterial communities of a melting High Arctic glacier snowpack.
ISME J. 2013 Sep;7(9):1814-26. doi: 10.1038/ismej.2013.51. Epub 2013 Apr 4.
8
Microbes in high arctic snow and implications for the cold biosphere.
Appl Environ Microbiol. 2011 May;77(10):3234-43. doi: 10.1128/AEM.02611-10. Epub 2011 Apr 1.
9
Microorganisms in the atmosphere over Antarctica.
FEMS Microbiol Ecol. 2009 Aug;69(2):143-57. doi: 10.1111/j.1574-6941.2009.00706.x. Epub 2009 May 7.
10
The microbial engines that drive Earth's biogeochemical cycles.
Science. 2008 May 23;320(5879):1034-9. doi: 10.1126/science.1153213.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验