Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA.
Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, USA.
J Virol. 2018 Feb 26;92(6). doi: 10.1128/JVI.02006-17. Print 2018 Mar 15.
The neutralizing antibody (nAb) response against the influenza virus hemagglutinin (HA) fusion glycoprotein is important for preventing viral infection, but we lack a comprehensive understanding of the mechanisms by which these antibodies act. Here we investigated the effect of nAb binding and the role of IgG bivalency in the inhibition of HA function for nAbs targeting distinct HA epitopes. HC19 targets the receptor binding pocket at the distal end of HA, while FI6v3 binds primarily to the HA2 fusion subunit toward the base of the stalk. Surprisingly, HC19 inhibited the ability of HA to induce lipid mixing by preventing the structural rearrangement of HA under fusion-activating conditions. These results suggest that nAbs such as HC19 not only act by blocking receptor binding but also inhibit key late-stage HA conformational changes required for fusion. Intact HC19 IgG was also shown to cross-link separate virus particles, burying large proportions of HA within aggregates where they are blocked from interacting with target membranes; Fabs yielded no such aggregation and displayed weaker neutralization than IgG, emphasizing the impact of bivalency on the ability to neutralize virus. In contrast, the stem-targeting nAb FI6v3 did not aggregate particles. The Fab fragment was significantly less effective than IgG in preventing both membrane disruption and fusion. We infer that interspike cross-linking within a given particle by FI6v3 IgG may be critical to its potent neutralization, as no significant neutralization occurred with Fabs. These results demonstrate that IgG bivalency enhances HA inhibition through functionally important modes not evident in pared-down Fab-soluble HA structures. The influenza virus hemagglutinin (HA) fusion glycoprotein mediates entry into target cells and is the primary antigenic target of neutralizing antibodies (nAbs). Our current structural understanding of mechanisms of antibody (Ab)-mediated neutralization largely relies on the high-resolution characterization of antigen binding (Fab) fragments in complex with soluble, isolated antigen constructs by cryo-electron microscopy (EM) single-particle reconstruction or X-ray crystallography. Interactions between full-length IgG and whole virions have not been well characterized, and a gap remains in our understanding of how intact Abs neutralize virus and prevent infection. Using structural and biophysical approaches, we observed that Ab-mediated inhibition of HA function and neutralization of virus infectivity occur by multiple coexisting mechanisms, are largely dependent on the specific epitope that is targeted, and are highly dependent on the bivalent nature of IgG molecules.
针对流感病毒血凝素 (HA) 融合糖蛋白的中和抗体 (nAb) 反应对于预防病毒感染很重要,但我们对这些抗体作用的机制缺乏全面了解。在这里,我们研究了针对不同 HA 表位的 nAb 结合的影响以及 IgG 二价性在抑制 HA 功能中的作用。HC19 靶向 HA 远端的受体结合口袋,而 FI6v3 主要结合茎部底部的 HA2 融合亚基。令人惊讶的是,HC19 通过阻止融合激活条件下 HA 的结构重排来抑制 HA 诱导脂质混合的能力。这些结果表明,HC19 等 nAb 不仅通过阻断受体结合起作用,而且还抑制融合所需的关键晚期 HA 构象变化。还表明完整的 HC19 IgG 能够交联分离的病毒颗粒,将大量的 HA 埋藏在聚集体中,使其无法与靶膜相互作用;Fab 没有产生这种聚集,并且中和作用比 IgG 弱,这强调了二价性对中和病毒能力的影响。相比之下,针对茎部的 nAb FI6v3 不会聚集颗粒。Fab 片段在阻止膜破坏和融合方面的效果明显低于 IgG。我们推断,FI6v3 IgG 在给定颗粒内的刺突间交联可能对其有效的中和至关重要,因为 Fab 没有显著的中和作用。这些结果表明,IgG 二价性通过在功能上重要的模式增强 HA 抑制作用,而这些模式在简化的 Fab 可溶性 HA 结构中并不明显。流感病毒血凝素 (HA) 融合糖蛋白介导进入靶细胞,是中和抗体 (nAb) 的主要抗原靶标。我们目前对抗体 (Ab) 介导中和机制的结构理解在很大程度上依赖于通过低温电子显微镜 (EM) 单颗粒重构或 X 射线晶体学对与可溶性分离抗原构建体复合的抗原结合 (Fab) 片段的高分辨率表征。全长 IgG 与整个病毒粒子之间的相互作用尚未得到很好的表征,我们对完整 Abs 如何中和病毒并防止感染的理解仍存在差距。使用结构和生物物理方法,我们观察到 Ab 介导的 HA 功能抑制和病毒感染性的中和通过多种共存机制发生,在很大程度上取决于所针对的特定表位,并且高度依赖于 IgG 分子的二价性质。