Nan Xuanyu, Li Yujie, Zhang Rui, Wang Ruoke, Lv Niannian, Li Jiayi, Chen Yuanfang, Zhou Bini, Wang Yangjunqi, Wang Ziyi, Zhu Jiayi, Chen Jing, Li Jinqian, Chen Wenlong, Zhang Qi, Shi Xuanling, Zhao Changwen, Chen Chunying, Liu Zhihua, Zhao Yuliang, Liu Dongsheng, Wang Xinquan, Yan Li-Tang, Li Taisheng, Zhang Linqi, Yang Yuhe R
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China.
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.
Nat Commun. 2024 Dec 4;15(1):10578. doi: 10.1038/s41467-024-54746-5.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its Omicron subvariants drastically amplifies transmissibility, infectivity, and immune escape, mainly due to their resistance to most neutralizing antibodies. Thus, exploring the mechanisms underlying antibody evasion is crucial. Although the full-length native form of antibody, immunoglobulin G (IgG), offers valuable insights into the neutralization, structural investigations primarily focus on the fragment of antigen-binding (Fab). Here, we employ single-particle cryo-electron microscopy (cryo-EM) to characterize a W328-6H2 antibody, in its native IgG form complexed with severe acute respiratory syndrome (SARS), severe acute respiratory syndrome coronavirus 2 wild-type (WT) and Omicron variant BA.1 spike protein (S). Three high-resolution structures reveal that the full-length IgG forms a centered head-to-head dimer of trimer when binds fully stoichiometrically with both SARS and WT S, while adopting a distinct offset configuration with Omicron BA.1 S. Combined with functional assays, our results suggest that, beyond the binding affinity between the RBD epitope and Fab, the higher-order architectures of S trimer and full-length IgG play an additional role in neutralization, enriching our understanding of enhanced neutralization by SARS-CoV-2 antibodies.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)及其奥密克戎亚变体的出现极大地增强了传播性、感染性和免疫逃逸能力,主要原因是它们对大多数中和抗体具有抗性。因此,探索抗体逃逸的潜在机制至关重要。尽管全长天然形式的抗体免疫球蛋白G(IgG)为中和作用提供了有价值的见解,但结构研究主要集中在抗原结合片段(Fab)上。在此,我们利用单颗粒冷冻电子显微镜(cryo-EM)对一种W328-6H2抗体进行表征,该抗体以其天然IgG形式与严重急性呼吸综合征(SARS)、严重急性呼吸综合征冠状病毒2野生型(WT)和奥密克戎变体BA.1刺突蛋白(S)形成复合物。三个高分辨率结构表明,当与SARS和WT S以完全化学计量比结合时,全长IgG形成三聚体的中心头对头二聚体,而与奥密克戎BA.1 S采用独特的偏移构型。结合功能分析,我们的结果表明,除了RBD表位与Fab之间的结合亲和力外,S三聚体和全长IgG的高阶结构在中和作用中发挥了额外作用,丰富了我们对SARS-CoV-2抗体增强中和作用的理解。