Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
Department of Chemistry, Ludwig Maximilians University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
Angew Chem Int Ed Engl. 2018 Feb 23;57(9):2362-2366. doi: 10.1002/anie.201712002. Epub 2018 Jan 26.
Patterns formed by reaction and diffusion are the foundation for many phenomena in biology. However, the experimental study of reaction-diffusion (R-D) systems has so far been dominated by chemical oscillators, for which many tools are available. In this work, we developed a photoswitch for the Min system of Escherichia coli, a versatile biological in vitro R-D system consisting of the antagonistic proteins MinD and MinE. A MinE-derived peptide of 19 amino acids was covalently modified with a photoisomerizable crosslinker based on azobenzene to externally control peptide-mediated depletion of MinD from the membrane. In addition to providing an on-off switch for pattern formation, we achieve frequency-locked resonance with a precise 2D spatial memory, thus allowing new insights into Min protein action on the membrane. Taken together, we provide a tool to study phenomena in pattern formation using biological agents.
反应和扩散形成的模式是生物学中许多现象的基础。然而,迄今为止,反应-扩散(R-D)系统的实验研究主要以化学振荡器为主,这些振荡器有许多工具可供使用。在这项工作中,我们开发了一种用于大肠杆菌 Min 系统的光开关,这是一个由拮抗蛋白 MinD 和 MinE 组成的多功能体外 R-D 系统。一种由 19 个氨基酸组成的 MinE 衍生肽与基于偶氮苯的光可异构化交联剂共价修饰,以外部控制肽介导的 MinD 从膜上耗尽。除了为模式形成提供开/关开关外,我们还实现了精确的 2D 空间记忆的频率锁定共振,从而使我们能够深入了解 Min 蛋白在膜上的作用。总之,我们提供了一种使用生物试剂研究模式形成现象的工具。