Department of Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
Current affiliation: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States.
ACS Synth Biol. 2021 May 21;10(5):939-949. doi: 10.1021/acssynbio.0c00604. Epub 2021 Apr 21.
The formation of large-scale patterns through molecular self-organization is a basic principle of life. Accordingly, the engineering of protein patterns and gradients is of prime relevance for synthetic biology. As a paradigm for such pattern formation, the bacterial MinDE protein system is based on self-organization of the ATPase MinD and ATPase-activating protein MinE on lipid membranes. Min patterns can be tightly regulated by tuning physical or biochemical parameters. Among the biochemically engineerable modules, MinD's membrane targeting sequence, despite being a key regulating element, has received little attention. Here we attempt to engineer patterns by modulating the membrane affinity of MinD. Unlike the traveling waves or stationary patterns commonly observed on flat supported membranes, standing-wave oscillations emerge upon elongating MinD's membrane targeting sequence via rationally guided mutagenesis. These patterns are capable of forming gradients and thereby spatially target co-reconstituted downstream proteins, highlighting their functional potential in designing new life-like systems.
通过分子自组织形成大规模图案是生命的基本原则。因此,蛋白质图案和梯度的工程设计对于合成生物学至关重要。作为这种图案形成的范例,细菌 MinDE 蛋白系统基于 ATP 酶 MinD 和 ATP 酶激活蛋白 MinE 在脂质膜上的自组织。通过调整物理或生化参数,可以对 Min 图案进行紧密调节。在可生化工程的模块中,尽管 MinD 的膜靶向序列是关键的调节元件,但受到的关注很少。在这里,我们试图通过调节 MinD 的膜亲和力来设计图案。与在平坦支撑膜上通常观察到的移动波或固定图案不同,通过合理引导的突变使 MinD 的膜靶向序列延长,会出现驻波振荡。这些图案能够形成梯度,从而对共重组的下游蛋白质进行空间靶向,突出了它们在设计新的类生命系统中的功能潜力。