Suppr超能文献

面内人工单层多结的合成。

Synthesis of In-Plane Artificial Lattices of Monolayer Multijunctions.

机构信息

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

出版信息

Adv Mater. 2018 Feb;30(7). doi: 10.1002/adma.201704796. Epub 2017 Dec 22.

Abstract

Recently, monolayers of van der Waals materials, including transition metal dichalcogenides (TMDs), are considered ideal building blocks for constructing 2D artificial lattices and heterostructures. Heterostructures with multijunctions of more than two monolayer TMDs are intriguing for exploring new physics and materials properties. Obtaining in-plane heterojunctions of monolayer TMDs with atomically sharp interfaces is very significant for fundamental research and applications. Currently, multistep synthesis for more than two monolayer TMDs remains a challenge because decomposition or compositional alloying is thermodynamically favored at the high growth temperature. Here, a multistep chemical vapor deposition (CVD) synthesis of the in-plane multijunctions of monolayer TMDs is presented. A low growth temperature synthesis is developed to avoid compositional fluctuations of as-grown TMDs, defects formations, and interfacial alloying for high heterointerface quality and thermal stability of monolayer TMDs. With optimized parameters, atomically sharp interfaces are successfully achieved in the synthesis of in-plane artificial lattices of the WS /WSe /MoS at reduced growth temperatures. Growth behaviors as well as the heterointerface quality are carefully studied in varying growth parameters. Highly oriented strain patterns are found in the second harmonic generation imaging of the TMD multijunctions, suggesting that the in-plane heteroepitaxial growth may induce distortion for unique material symmetry.

摘要

最近,包括过渡金属二卤化物(TMDs)在内的范德华材料单层被认为是构建二维人工晶格和异质结构的理想构建块。具有超过两层 TMD 单层的多结异质结构对于探索新的物理和材料特性很有吸引力。获得具有原子级尖锐界面的 TMD 单层的面内异质结对于基础研究和应用非常重要。目前,对于超过两层 TMD 的多步合成仍然是一个挑战,因为在高温生长时,分解或组成合金在热力学上是有利的。在这里,提出了一种 TMD 单层面内多结的多步化学气相沉积(CVD)合成方法。开发了低温生长合成方法,以避免生长的 TMD 成分波动、缺陷形成和界面合金化,从而获得高质量的异质界面和 TMD 单层的热稳定性。通过优化参数,在降低的生长温度下成功实现了 WS/WSe/MoS 面内人工晶格的原子级尖锐界面合成。在不同的生长参数下,仔细研究了生长行为和异质界面质量。在 TMD 多结的二次谐波成像中发现了高度取向的应变模式,这表明面内异质外延生长可能会引起独特材料对称性的扭曲。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验