BIO5 Institute, University of Arizona, Tucson, AZ, USA.
University of Nevada, Reno.
Brief Bioinform. 2019 May 21;20(3):789-805. doi: 10.1093/bib/bbx149.
The development of computational methods capable of analyzing -omics data at the individual level is critical for the success of precision medicine. Although unprecedented opportunities now exist to gather data on an individual's -omics profile ('personalome'), interpreting and extracting meaningful information from single-subject -omics remain underdeveloped, particularly for quantitative non-sequence measurements, including complete transcriptome or proteome expression and metabolite abundance. Conventional bioinformatics approaches have largely been designed for making population-level inferences about 'average' disease processes; thus, they may not adequately capture and describe individual variability. Novel approaches intended to exploit a variety of -omics data are required for identifying individualized signals for meaningful interpretation. In this review-intended for biomedical researchers, computational biologists and bioinformaticians-we survey emerging computational and translational informatics methods capable of constructing a single subject's 'personalome' for predicting clinical outcomes or therapeutic responses, with an emphasis on methods that provide interpretable readouts. Key points: (i) the single-subject analytics of the transcriptome shows the greatest development to date and, (ii) the methods were all validated in simulations, cross-validations or independent retrospective data sets. This survey uncovers a growing field that offers numerous opportunities for the development of novel validation methods and opens the door for future studies focusing on the interpretation of comprehensive 'personalomes' through the integration of multiple -omics, providing valuable insights into individual patient outcomes and treatments.
开发能够在个体水平上分析组学数据的计算方法对于精准医学的成功至关重要。尽管现在有前所未有的机会收集个体组学特征(“个人组学”)的数据,但对单个个体的组学数据进行解释和提取有意义的信息仍处于发展阶段,特别是对于定量非序列测量,包括完整的转录组或蛋白质组表达和代谢物丰度。传统的生物信息学方法主要用于对“平均”疾病过程进行群体推断;因此,它们可能无法充分捕捉和描述个体的变异性。需要新的方法来利用各种组学数据,以识别用于有意义解释的个体化信号。在这篇综述中——面向生物医学研究人员、计算生物学家和生物信息学家——我们调查了新兴的计算和转化信息学方法,这些方法能够构建个体的“个人组学”来预测临床结果或治疗反应,重点是提供可解释的读数的方法。要点:(i)转录组的单个体分析是迄今为止发展最成熟的,(ii)这些方法都在模拟、交叉验证或独立的回顾性数据集上进行了验证。这项调查揭示了一个不断发展的领域,为开发新的验证方法提供了众多机会,并为未来的研究打开了大门,这些研究通过整合多种组学来关注全面的“个人组学”的解释,为个体患者的结果和治疗提供有价值的见解。