Suppr超能文献

雌雄同体和配子特异性的 X 染色体分离模式在一种三型线虫中。

Sex- and Gamete-Specific Patterns of X Chromosome Segregation in a Trioecious Nematode.

机构信息

School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.

Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA.

出版信息

Curr Biol. 2018 Jan 8;28(1):93-99.e3. doi: 10.1016/j.cub.2017.11.037. Epub 2017 Dec 21.

Abstract

Three key steps in meiosis allow diploid organisms to produce haploid gametes: (1) homologous chromosomes (homologs) pair and undergo crossovers; (2) homologs segregate to opposite poles; and (3) sister chromatids segregate to opposite poles. The XX/XO sex determination system found in many nematodes [1] facilitates the study of meiosis because variation is easily recognized [2-4]. Here we show that meiotic segregation of X chromosomes in the trioecious nematode Auanema rhodensis [5] varies according to sex (hermaphrodite, female, or male) and type of gametogenesis (oogenesis or spermatogenesis). In this species, XO males exclusively produce X-bearing sperm [6, 7]. The unpaired X precociously separates into sister chromatids, which co-segregate with the autosome set to generate a functional haplo-X sperm. The other set of autosomes is discarded into a residual body. Here we explore the X chromosome behavior in female and hermaphrodite meioses. Whereas X chromosomes segregate following the canonical pattern during XX female oogenesis to yield haplo-X oocytes, during XX hermaphrodite oogenesis they segregate to the first polar body to yield nullo-X oocytes. Thus, crosses between XX hermaphrodites and males yield exclusively male progeny. During hermaphrodite spermatogenesis, the sister chromatids of the X chromosomes separate during meiosis I, and homologous X chromatids segregate to the functional sperm to create diplo-X sperm. Given these intra-species, intra-individual, and intra-gametogenesis variations in the meiotic program, A. rhodensis is an ideal model for studying the plasticity of meiosis and how it can be modulated.

摘要

减数分裂的三个关键步骤使二倍体生物能够产生单倍体配子

(1)同源染色体(同源物)配对并发生交叉;(2)同源物分离到相对的两极;(3)姐妹染色单体分离到相对的两极。许多线虫中发现的 XX/XO 性别决定系统[1]便于研究减数分裂,因为易于识别变异[2-4]。在这里,我们表明,在三栖线虫 Auanema rhodensis[5]中,X 染色体的减数分裂分离根据性别(雌雄同体、雌性或雄性)和配子发生类型(卵发生或精子发生)而变化。在这个物种中,XO 雄性仅产生携带 X 的精子[6,7]。未配对的 X 过早地分离为姐妹染色单体,它们与常染色体一起分离,生成功能单倍体-X 精子。另一组常染色体被丢弃到残余体中。在这里,我们探讨了雌性和雌雄同体减数分裂中的 X 染色体行为。虽然 X 染色体在 XX 雌性卵发生中按照经典模式分离,以产生单倍体-X 卵母细胞,但在 XX 雌雄同体卵发生中,它们分离到第一极体,以产生 nullo-X 卵母细胞。因此,XX 雌雄同体与雄性之间的杂交仅产生雄性后代。在雌雄同体精子发生过程中,X 染色体的姐妹染色单体在减数分裂 I 中分离,同源 X 染色体分离到功能精子中,以产生二倍体-X 精子。鉴于减数分裂方案在种内、个体内和配子发生内的这些变化,A. rhodensis 是研究减数分裂可塑性及其如何被调节的理想模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40c9/5772170/027f422317f4/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验