Suppr超能文献

使用隐马尔可夫模型进行疾病进展建模。

Disease progression modeling using Hidden Markov Models.

作者信息

Sukkar Rafid, Katz Elyse, Zhang Yanwei, Raunig David, Wyman Bradley T

机构信息

Voxelon, Inc., Niles, IL 60714, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2845-8. doi: 10.1109/EMBC.2012.6346556.

Abstract

The development of novel treatments for many slowly progressing diseases, such as Alzheimer's disease (AD), is dependent on the ability to monitor and detect changes in disease progression. In some diseases the distinct clinical stages of the disease progress far too slowly to enable a quick evaluation of the efficacy of a given proposed treatment. To help improve the assessment of disease progression, we propose using Hidden Markov Models (HMM's) to model, in a more granular fashion, disease progression as compared to the clinical stages of the disease. Unlike many other applications of Hidden Markov Models, we train our HMM in an unsupervised way and then evaluate how effective the model is at uncovering underlying statistical patterns in disease progression by considering HMM states as disease stages. In this study, we focus on AD and show that our model, when evaluated on the cross validation data, can identify more granular disease stages than the three currently accepted clinical stages of "Normal", "MCI" (Mild Cognitive Impairment), and "AD".

摘要

许多缓慢进展性疾病(如阿尔茨海默病(AD))新型治疗方法的开发,取决于监测和检测疾病进展变化的能力。在某些疾病中,疾病的不同临床阶段进展过于缓慢,无法快速评估给定治疗方案的疗效。为了帮助改进对疾病进展的评估,我们建议使用隐马尔可夫模型(HMM)以更细致的方式对疾病进展进行建模,与疾病的临床阶段相比。与隐马尔可夫模型的许多其他应用不同,我们以无监督的方式训练我们的HMM,然后通过将HMM状态视为疾病阶段来评估该模型在揭示疾病进展中的潜在统计模式方面的有效性。在本研究中,我们专注于AD,并表明我们的模型在交叉验证数据上进行评估时,能够识别出比目前公认的“正常”、“MCI”(轻度认知障碍)和“AD”这三个临床阶段更细致的疾病阶段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验