Suppr超能文献

比较五种常见肿瘤生物标志物和CA19-9对胰腺癌的诊断准确性:一项诊断试验准确性网络Meta分析的方案

Comparing the diagnostic accuracy of five common tumour biomarkers and CA19-9 for pancreatic cancer: a protocol for a network meta-analysis of diagnostic test accuracy.

作者信息

Ge Long, Pan Bei, Song Fujian, Ma Jichun, Zeraatkar Dena, Zhou Jianguo, Tian Jinhui

机构信息

The First Clinical Medical College, Lanzhou University, Lanzhou, China.

Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China.

出版信息

BMJ Open. 2017 Dec 26;7(12):e018175. doi: 10.1136/bmjopen-2017-018175.

Abstract

INTRODUCTION

Surgical resection is the only curative treatment for patients with resectable pancreatic cancer. Unfortunately, 80%-85% of patients present with locally advanced or metastatic unresectable pancreatic cancer at the time of diagnosis. Detection of pancreatic cancer at early stages remains a great challenge due to lack of accurate detection tests. Recommendations in existing clinical practice guidelines on early diagnosis of pancreatic cancer are inconsistent and based on limited evidence. Most of them endorse measuring serum CA19-9 as a complementary test, but also state that it is not recommended for diagnosing early pancreatic cancer. There are currently no other tumour-specific markers recommended for diagnosing early pancreatic cancer. This study aims to evaluate and compare the accuracy of five common tumour biomarkers (CA242,carcino-embryonic antigen (CEA)), CA125, microRNAs and K-ras gene mutation) and CA19-9 and their combinations for diagnosing pancreatic cancer using network meta-analysis method, and to rank these tests using a superiority index.

METHODS AND ANALYSIS

PubMed, EMBASE and the Cochrane Central Register of Controlled Trials will be searched from inception to April 2017. The search will include the above-mentioned tumour biomarkers for diagnosing pancreatic cancer, including CA19-9. The risk of bias for each study will be independently assessed as low, moderate or high using criteria adapted from the Quality Assessment of Diagnostic Accuracy Studies 2. Network meta-analysis will be performed using STATA V.12.0 and R software V.3.4.1. The competing diagnostic tests will be ranked by a superiority index.

ETHICS AND DISSEMINATION

Ethical approval and patient consent are not required since this study is a network meta-analysis based on published studies. The results of this network meta-analysis will be submitted to a peer-reviewed journal for publication.

PROSPERO REGISTRATION NUMBER

CRD42017064627.

摘要

引言

手术切除是可切除胰腺癌患者的唯一治愈性治疗方法。不幸的是,80%-85%的患者在确诊时已出现局部晚期或转移性不可切除的胰腺癌。由于缺乏准确的检测方法,早期胰腺癌的检测仍然是一项巨大挑战。现有胰腺癌早期诊断临床实践指南中的建议不一致且证据有限。其中大多数支持将血清CA19-9作为一项辅助检测,但也指出不推荐其用于早期胰腺癌的诊断。目前没有其他肿瘤特异性标志物被推荐用于早期胰腺癌的诊断。本研究旨在使用网络荟萃分析方法评估并比较五种常见肿瘤生物标志物(CA242、癌胚抗原(CEA)、CA125、微小RNA和K-ras基因突变)以及CA19-9及其组合用于诊断胰腺癌的准确性,并使用优势指数对这些检测方法进行排序。

方法与分析

将检索PubMed、EMBASE和Cochrane对照试验中央注册库,检索时间从建库至2017年4月。检索将包括上述用于诊断胰腺癌的肿瘤生物标志物,包括CA19-9。将使用改编自《诊断准确性研究质量评估2》的标准,独立评估每项研究的偏倚风险为低、中或高。将使用STATA V.12.0和R软件V.3.4.1进行网络荟萃分析。将通过优势指数对相互竞争的诊断检测方法进行排序。

伦理与传播

由于本研究是基于已发表研究的网络荟萃分析,因此无需伦理批准和患者同意。本网络荟萃分析的结果将提交给同行评审期刊发表。

PROSPERO注册号:CRD42017064627。

相似文献

7
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
10
Dressings and topical agents for treating pressure ulcers.用于治疗压疮的敷料和外用剂。
Cochrane Database Syst Rev. 2017 Jun 22;6(6):CD011947. doi: 10.1002/14651858.CD011947.pub2.

引用本文的文献

本文引用的文献

2
Cancer Statistics, 2017.《2017 年癌症统计》
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
4
ANOVA model for network meta-analysis of diagnostic test accuracy data.网络荟萃分析诊断试验准确性数据的方差分析模型。
Stat Methods Med Res. 2018 Jun;27(6):1766-1784. doi: 10.1177/0962280216669182. Epub 2016 Sep 20.
6
Pancreatic cancer.胰腺癌。
Lancet. 2016 Jul 2;388(10039):73-85. doi: 10.1016/S0140-6736(16)00141-0. Epub 2016 Jan 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验