Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1238-1251. doi: 10.1021/acsabm.0c01084. Epub 2021 Jan 11.
Deformity or fissure within the annulus fibrosus (AF) lamellar structure often results in disc herniation leading to the extrusion of nucleus pulposus (NP), which pushes the adjacent nerve, causing low back pain. Low back pain, frequently associated with the degeneration of the intervertebral disc (IVD), affects around 80% of the population worldwide. The difficulty in mimicking the unique structural characteristics of the native AF tissue presents several challenges to the tissue engineering field for the development of the long-term effective therapeutic strategy for AF tissue regeneration. The AF cell niche possesses less reparative capacity for regeneration and thus compels to develop a strategy to recapitulate damaged AF tissues. We have fabricated a polycaprolactone-supported electrocompacted type-I collagen patch (A-PCL-NH+Col-I) using surface-modified electrospun-aligned polycaprolactone (A-PCL) nanofibers cross-linked with an electro-compacted type-I collagen patch (Col-I) using EDAC-NHS (1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride and -hydroxy succinimide). This subtle approach offered a 3D biodegradable scaffold with dense aggregates of anisotropic collagen-I nanofibrils coupled with electrospun-aligned PCL nanofibers, which provide high tensile strength (4.21 ± 1.07 MPa), moduli (24.496 ± 4.85 MPa), low subsidence to failure, and high-water absorption ability. The systemic organization of both the polymers within the scaffold, evident from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, revealed a uniform degree of fiber alignment assessed by differential interference contrast (DIC) microscopy, field-emission scanning electron microscopy (FE-SEM), and cryo-SEM. The aminolysis of A-PCL nanofibers was established by energy-dispersive X-ray analysis (EDX), while circular dichroic spectra showed that the electro-compacted Col-I patch displayed a triple helical structure, characteristic of collagens. Moreover, the scaffold revealed more hydrophilic, rough nano-features, which provided ample ligands for cell attachment supporting adequate proliferation of primary goat annulus fibrosus (AF) cells, oriented along the fiber direction, and also favored sufficient production of collagen type-I (+32-fold change) and a glycosaminoglycan extracellular matrix (+2.3-fold change) as compared to cell control, respectively. This study thus demonstrates for the first time the practicability of creating an aligned polycaprolactone-supported electrocompacted type-I collagen hydrogel (A-PCL-NH+Col-I) with significant biomechanical properties, which can be used as an alternative to repair and regenerate AF fissures in degenerated IVD.
纤维环(AF)板层结构内的畸形或裂隙常导致椎间盘突出,从而导致核髓核(NP)的挤出,压迫邻近的神经,引起下腰痛。下腰痛常与椎间盘(IVD)的退变有关,影响全球约 80%的人口。由于难以模拟天然 AF 组织的独特结构特征,组织工程领域在开发长期有效的 AF 组织再生治疗策略方面面临诸多挑战。AF 细胞巢的再生修复能力较弱,因此需要开发一种策略来重现受损的 AF 组织。我们使用表面改性的静电纺丝定向聚己内酯(A-PCL)纳米纤维制造了一种聚己内酯支持的电压实型 I 型胶原贴片(A-PCL-NH+Col-I),该纳米纤维使用 EDAC-NHS(1-乙基-3-[3-(二甲基氨基)丙基]碳二亚胺盐酸盐和-羟基琥珀酰亚胺)交联电压实型 I 型胶原贴片(Col-I)。这种微妙的方法提供了一种具有密集各向异性胶原-I 纳米纤维聚集体的 3D 可生物降解支架,与静电纺丝定向聚己内酯纳米纤维结合,提供高拉伸强度(4.21±1.07 MPa)、模量(24.496±4.85 MPa)、低失效下沉和高吸水性。从衰减全反射傅里叶变换红外光谱(ATR-FTIR)可以明显看出支架内两种聚合物的系统组织,差示干涉对比(DIC)显微镜、场发射扫描电子显微镜(FE-SEM)和冷冻扫描电子显微镜(Cryo-SEM)评估的纤维排列均匀度。通过能量色散 X 射线分析(EDX)证实了 A-PCL 纳米纤维的氨解,而圆二色光谱显示电压实 Col-I 贴片显示出胶原的三螺旋结构特征。此外,支架显示出更亲水、粗糙的纳米特征,为细胞附着提供了充足的配体,支持原代山羊纤维环(AF)细胞的充分增殖,沿纤维方向排列,并有利于充分产生 I 型胶原(+32 倍变化)和糖胺聚糖细胞外基质(+2.3 倍变化),与细胞对照相比。因此,本研究首次证明了制造具有显著生物力学性能的定向聚己内酯支持电压实 I 型胶原水凝胶(A-PCL-NH+Col-I)的实用性,可作为修复和再生退变 IVD 中 AF 裂隙的替代方法。