Debnath Anjan, Calvet Claudia M, Jennings Gareth, Zhou Wenxu, Aksenov Alexander, Luth Madeline R, Abagyan Ruben, Nes W David, McKerrow James H, Podust Larissa M
Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.
Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
PLoS Negl Trop Dis. 2017 Dec 28;11(12):e0006104. doi: 10.1371/journal.pntd.0006104. eCollection 2017 Dec.
Primary Amoebic Meningoencephalitis (PAM) is caused by Naegleria fowleri, a free-living amoeba that occasionally infects humans. While considered "rare" (but likely underreported) the high mortality rate and lack of established success in treatment makes PAM a particularly devastating infection. In the absence of economic inducements to invest in development of anti-PAM drugs by the pharmaceutical industry, anti-PAM drug discovery largely relies on drug 'repurposing'-a cost effective strategy to apply known drugs for treatment of rare or neglected diseases. Similar to fungi, N. fowleri has an essential requirement for ergosterol, a building block of plasma and cell membranes. Disruption of sterol biosynthesis by small-molecule inhibitors is a validated interventional strategy against fungal pathogens of medical and agricultural importance. The N. fowleri genome encodes the sterol 14-demethylase (CYP51) target sharing ~35% sequence identity to fungal orthologues. The similarity of targets raises the possibility of repurposing anti-mycotic drugs and optimization of their usage for the treatment of PAM. In this work, we (i) systematically assessed the impact of anti-fungal azole drugs, known as conazoles, on sterol biosynthesis and viability of cultured N. fowleri trophozotes, (ii) identified the endogenous CYP51 substrate by mass spectrometry analysis of N. fowleri lipids, and (iii) analyzed the interactions between the recombinant CYP51 target and conazoles by UV-vis spectroscopy and x-ray crystallography. Collectively, the target-based and parasite-based data obtained in these studies validated CYP51 as a potentially 'druggable' target in N. fowleri, and conazole drugs as the candidates for assessment in the animal model of PAM.
原发性阿米巴脑膜脑炎(PAM)由福氏耐格里阿米巴引起,这是一种偶尔感染人类的自由生活阿米巴。虽然被认为“罕见”(但可能报告不足),但高死亡率和缺乏既定的成功治疗方法使PAM成为一种特别具有毁灭性的感染。由于制药行业缺乏投资开发抗PAM药物的经济诱因,抗PAM药物的发现很大程度上依赖于药物“重新利用”——一种应用已知药物治疗罕见或被忽视疾病的具有成本效益的策略。与真菌类似,福氏耐格里阿米巴对麦角固醇有基本需求,麦角固醇是质膜和细胞膜的组成部分。小分子抑制剂破坏甾醇生物合成是针对具有医学和农业重要性的真菌病原体的一种经过验证的干预策略。福氏耐格里阿米巴基因组编码甾醇14-脱甲基酶(CYP51)靶点,与真菌直系同源物具有约35%的序列同一性。靶点的相似性增加了重新利用抗真菌药物并优化其用于治疗PAM的可能性。在这项工作中,我们(i)系统评估了抗真菌唑类药物(称为康唑)对培养的福氏耐格里阿米巴滋养体甾醇生物合成和活力的影响,(ii)通过对福氏耐格里阿米巴脂质的质谱分析确定内源性CYP51底物,以及(iii)通过紫外可见光谱和X射线晶体学分析重组CYP51靶点与康唑之间的相互作用。总体而言,这些研究中获得的基于靶点和基于寄生虫的数据验证了CYP51是福氏耐格里阿米巴中潜在的“可成药”靶点,以及唑类药物作为PAM动物模型评估的候选药物。