Suppr超能文献

在 3D 拓扑超材料的环路上定位柔软度和应力。

Localizing softness and stress along loops in 3D topological metamaterials.

机构信息

Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, The Netherlands.

The James Franck Institute, The University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):489-494. doi: 10.1073/pnas.1713826115. Epub 2017 Dec 28.

Abstract

Topological states can be used to control the mechanical properties of a material along an edge or around a localized defect. The rigidity of elastic networks is characterized by a topological invariant called the polarization; materials with a well-defined uniform polarization display a dramatic range of edge softness depending on the orientation of the polarization relative to the terminating surface. However, in all 3D mechanical metamaterials proposed to date, the topological modes are mixed with bulk soft modes, which organize themselves in Weyl loops. Here, we report the design of a 3D topological metamaterial without Weyl lines and with a uniform polarization that leads to an asymmetry between the number of soft modes on opposing surfaces. We then use this construction to localize topological soft modes in interior regions of the material by including defect lines-dislocation loops-that are unique to three dimensions. We derive a general formula that relates the difference in the number of soft modes and states of self-stress localized along the dislocation loop to the handedness of the vector triad formed by the lattice polarization, Burgers vector, and dislocation-line direction. Our findings suggest a strategy for preprogramming failure and softness localized along lines in 3D, while avoiding extended soft Weyl modes.

摘要

拓扑状态可用于控制材料沿边缘或局部缺陷的机械性能。弹性网络的刚性由一个称为极化的拓扑不变量来表征;具有明确均匀极化的材料表现出显著的边缘软化范围,具体取决于极化相对于终止表面的方向。然而,在迄今为止提出的所有 3D 机械超材料中,拓扑模式与体软模式混合,体软模式在魏尔环中组织自己。在这里,我们报告了一种没有魏尔线且具有均匀极化的 3D 拓扑超材料的设计,这导致了在相反表面上的软模式数量之间的不对称性。然后,我们通过包括仅在三维中存在的缺陷线 - 位错环,在材料的内部区域局部化拓扑软模式。我们推导出一个一般公式,该公式将沿着位错环局部化的软模式和自应力状态的数量差异与晶格极化、伯格斯矢量和位错线方向形成的矢量三元组的手性联系起来。我们的发现表明了一种沿线预编程故障和软化的策略,同时避免了扩展的软魏尔模式。

相似文献

1
Localizing softness and stress along loops in 3D topological metamaterials.在 3D 拓扑超材料的环路上定位柔软度和应力。
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):489-494. doi: 10.1073/pnas.1713826115. Epub 2017 Dec 28.
2
Fully Polarized Topological Isostatic Metamaterials in Three Dimensions.三维全极化拓扑等静压超材料
Phys Rev Lett. 2024 Sep 6;133(10):106101. doi: 10.1103/PhysRevLett.133.106101.
3
Mechanical Weyl Modes in Topological Maxwell Lattices.拓扑麦克斯韦格子中的力学外尔模。
Phys Rev Lett. 2016 Apr 1;116(13):135503. doi: 10.1103/PhysRevLett.116.135503.
6
Selective buckling via states of self-stress in topological metamaterials.拓扑超材料中通过自应力状态实现的选择性屈曲。
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7639-44. doi: 10.1073/pnas.1502939112. Epub 2015 Jun 8.
8
Classification of topological phonons in linear mechanical metamaterials.线性机械超材料中拓扑声子的分类
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):E4767-75. doi: 10.1073/pnas.1605462113. Epub 2016 Aug 1.
9
Photonic topological phases in dispersive metamaterials.色散超材料中的光子拓扑相。
Sci Rep. 2018 Dec 14;8(1):17881. doi: 10.1038/s41598-018-36170-0.

引用本文的文献

1
Folding a single high-genus surface into a repertoire of metamaterial functionalities.将单个高亏格曲面折叠成超材料功能的一个系列。
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2413370121. doi: 10.1073/pnas.2413370121. Epub 2024 Nov 8.
2
Stress guides in generic static mechanical metamaterials.通用静态机械超材料中的应力引导
Natl Sci Rev. 2024 Mar 22;11(9):nwae110. doi: 10.1093/nsr/nwae110. eCollection 2024 Sep.
4
Topological transformability and reprogrammability of multistable mechanical metamaterials.多稳态机械超材料的拓扑可变性和可重编程性。
Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2211725119. doi: 10.1073/pnas.2211725119. Epub 2022 Dec 19.
6
Guided transition waves in multistable mechanical metamaterials.多稳态机械超材料中的引导过渡波。
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2319-2325. doi: 10.1073/pnas.1913228117. Epub 2020 Jan 22.
7
Reversible signal transmission in an active mechanical metamaterial.活性机械超材料中的可逆信号传输。
Proc Math Phys Eng Sci. 2019 Jul;475(2227):20190146. doi: 10.1098/rspa.2019.0146. Epub 2019 Jul 24.
8
Soft self-assembly of Weyl materials for light and sound.Weyl 物质的软自组装用于光和声。
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3655-E3664. doi: 10.1073/pnas.1720828115. Epub 2018 Apr 2.

本文引用的文献

1
Edge mode amplification in disordered elastic networks.无序弹性网络中的边缘模式放大。
Soft Matter. 2017 Aug 30;13(34):5795-5801. doi: 10.1039/c7sm00475c.
2
Quantized electric multipole insulators.量子化电多极绝缘体。
Science. 2017 Jul 7;357(6346):61-66. doi: 10.1126/science.aah6442.
3
Intrinsically Polar Elastic Metamaterials.本征各向异性弹性超材料
Adv Mater. 2017 Jul;29(26). doi: 10.1002/adma.201700540. Epub 2017 May 3.
4
Designing allostery-inspired response in mechanical networks.在机械网络中设计受变构启发的响应。
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2520-2525. doi: 10.1073/pnas.1612139114. Epub 2017 Feb 21.
5
Architecture and coevolution of allosteric materials.变构材料的结构与协同进化
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2526-2531. doi: 10.1073/pnas.1615536114. Epub 2017 Feb 21.
6
Static non-reciprocity in mechanical metamaterials.机械超材料中的静态非互易性。
Nature. 2017 Feb 23;542(7642):461-464. doi: 10.1038/nature21044. Epub 2017 Feb 13.
7
Transformable topological mechanical metamaterials.可变形拓扑力学超材料。
Nat Commun. 2017 Jan 23;8:14201. doi: 10.1038/ncomms14201.
8
Topological Phonons and Weyl Lines in Three Dimensions.三维空间中的拓扑声子与外尔线
Phys Rev Lett. 2016 Aug 5;117(6):068001. doi: 10.1103/PhysRevLett.117.068001.
9
Topological boundary modes in jammed matter.堆积物质中的拓扑边界模式。
Soft Matter. 2016 Jul 13;12(28):6079-87. doi: 10.1039/c6sm00875e.
10
Mechanical Weyl Modes in Topological Maxwell Lattices.拓扑麦克斯韦格子中的力学外尔模。
Phys Rev Lett. 2016 Apr 1;116(13):135503. doi: 10.1103/PhysRevLett.116.135503.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验