Pazzagli Laura, Linder Marie, Zhang Mingliang, Vago Emese, Stang Paul, Myers David, Andersen Morten, Bahmanyar Shahram
Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Janssen, Beerse, Belgium.
Pharmacoepidemiol Drug Saf. 2018 Feb;27(2):148-160. doi: 10.1002/pds.4372. Epub 2017 Dec 28.
Lack of control for time-varying exposures can lead to substantial bias in estimates of treatment effects. The aim of this study is to provide an overview and guidance on some of the available methodologies used to address problems related to time-varying exposure and confounding in pharmacoepidemiology and other observational studies. The methods are explored from a conceptual rather than an analytical perspective.
The methods described in this study have been identified exploring the literature concerning to the time-varying exposure concept and basing the search on four fundamental pharmacoepidemiological problems, construction of treatment episodes, time-varying confounders, cumulative exposure and latency, and treatment switching.
A correct treatment episodes construction is fundamental to avoid bias in treatment effect estimates. Several methods exist to address time-varying covariates, but the complexity of the most advanced approaches-eg, marginal structural models or structural nested failure time models-and the lack of user-friendly statistical packages have prevented broader adoption of these methods. Consequently, simpler methods are most commonly used, including, for example, methods without any adjustment strategy and models with time-varying covariates. The magnitude of exposure needs to be considered and properly modelled.
Further research on the application and implementation of the most complex methods is needed. Because different methods can lead to substantial differences in the treatment effect estimates, the application of several methods and comparison of the results is recommended. Treatment episodes estimation and exposure quantification are key parts in the estimation of treatment effects or associations of interest.
对随时间变化的暴露因素缺乏控制可能会导致治疗效果估计出现重大偏差。本研究的目的是对一些可用于解决药物流行病学及其他观察性研究中与随时间变化的暴露和混杂因素相关问题的现有方法进行概述并提供指导。这些方法是从概念而非分析的角度进行探讨的。
本研究中描述的方法是通过探索与随时间变化的暴露概念相关的文献,并基于四个基本的药物流行病学问题来确定的,即治疗过程的构建、随时间变化的混杂因素、累积暴露和潜伏期以及治疗转换。
正确构建治疗过程对于避免治疗效果估计中的偏差至关重要。有几种方法可用于处理随时间变化的协变量,但最先进的方法(如边际结构模型或结构嵌套失效时间模型)的复杂性以及缺乏用户友好的统计软件包阻碍了这些方法的更广泛应用。因此,最常用的是更简单的方法,例如,没有任何调整策略的方法和具有随时间变化协变量的模型。需要考虑暴露的程度并进行适当建模。
需要对最复杂方法的应用和实施进行进一步研究。由于不同方法可能导致治疗效果估计存在重大差异,建议应用多种方法并比较结果。治疗过程估计和暴露量化是估计感兴趣的治疗效果或关联的关键部分。