Suppr超能文献

通过共聚焦激光内镜对新型细菌特异性探针在离体人肺组织上进行光学筛选。

Optical Screening of Novel Bacteria-specific Probes on Ex Vivo Human Lung Tissue by Confocal Laser Endomicroscopy.

作者信息

Mills Bethany, Akram Ahsan R, Scholefield Emma, Bradley Mark, Dhaliwal Kevin

机构信息

EPSRC Proteus Hub, MRC Centre of Inflammation Research, Queen's Medical Research Institute, University of Edinburgh.

School of Chemistry, EaStChem, University of Edinburgh.

出版信息

J Vis Exp. 2017 Nov 29(129):56284. doi: 10.3791/56284.

Abstract

Improving the speed and accuracy of bacterial detection is important for patient stratification and to ensure the appropriate use of antimicrobials. To achieve this goal, the development of diagnostic techniques to recognize bacterial presence in real-time at the point-of-care is required. Optical imaging for direct identification of bacteria within the host is an attractive approach. Several attempts at chemical probe design and validation have been investigated, however none have yet been successfully translated into the clinic. Here we describe a method for ex vivo validation of bacteria-specific probes for identification of bacteria within the distal lung, imaged by fibered confocal fluorescence microscopy (FCFM). Our model used ex vivo human lung tissue and a clinically approved confocal laser endomicroscopy (CLE) platform to screen novel bacteria-specific imaging compounds, closely mimicking imaging conditions expected to be encountered with patients. Therefore, screening compounds by this technique provides confidence of potential clinical tractability.

摘要

提高细菌检测的速度和准确性对于患者分层以及确保抗菌药物的合理使用至关重要。为实现这一目标,需要开发能够在护理点实时识别细菌存在的诊断技术。用于直接识别宿主体内细菌的光学成像技术是一种有吸引力的方法。尽管已经对化学探针设计和验证进行了多次尝试,但尚未有任何一种成功转化应用于临床。在此,我们描述了一种用于体外验证细菌特异性探针的方法,该探针用于识别远端肺内的细菌,通过纤维共聚焦荧光显微镜(FCFM)进行成像。我们的模型使用体外人肺组织和临床批准的共聚焦激光内镜(CLE)平台来筛选新型细菌特异性成像化合物,紧密模拟预期在患者身上遇到的成像条件。因此,通过该技术筛选化合物可提供潜在临床可操作性的信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aee/5755507/2e5645a1b303/jove-129-56284-0.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验