Fang Evandro F, Palikaras Konstantinos, Sun Nuo, Fivenson Elayne M, Spangler Ryan D, Kerr Jesse S, Cordonnier Stephanie A, Hou Yujun, Dombi Eszter, Kassahun Henok, Tavernarakis Nektarios, Poulton Joanna, Nilsen Hilde, Bohr Vilhelm A
Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health; Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital;
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas.
J Vis Exp. 2017 Nov 22(129):56301. doi: 10.3791/56301.
Mitochondria are the powerhouses of cells and produce cellular energy in the form of ATP. Mitochondrial dysfunction contributes to biological aging and a wide variety of disorders including metabolic diseases, premature aging syndromes, and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Maintenance of mitochondrial health depends on mitochondrial biogenesis and the efficient clearance of dysfunctional mitochondria through mitophagy. Experimental methods to accurately detect autophagy/mitophagy, especially in animal models, have been challenging to develop. Recent progress towards the understanding of the molecular mechanisms of mitophagy has enabled the development of novel mitophagy detection techniques. Here, we introduce several versatile techniques to monitor mitophagy in human cells, Caenorhabditis elegans (e.g., Rosella and DCT-1/ LGG-1 strains), and mice (mt-Keima). A combination of these mitophagy detection techniques, including cross-species evaluation, will improve the accuracy of mitophagy measurements and lead to a better understanding of the role of mitophagy in health and disease.
线粒体是细胞的动力源,以三磷酸腺苷(ATP)的形式产生细胞能量。线粒体功能障碍会导致生物衰老以及多种疾病,包括代谢性疾病、早衰综合征和神经退行性疾病,如阿尔茨海默病(AD)和帕金森病(PD)。线粒体健康的维持依赖于线粒体生物发生以及通过线粒体自噬对功能失调的线粒体进行有效清除。准确检测自噬/线粒体自噬的实验方法,尤其是在动物模型中,一直具有挑战性。最近在理解线粒体自噬分子机制方面取得的进展使得新型线粒体自噬检测技术得以开发。在此,我们介绍几种通用技术,用于监测人类细胞、秀丽隐杆线虫(如Rosella和DCT - 1/LGG - 1菌株)和小鼠(线粒体红色荧光蛋白Keima)中的线粒体自噬。这些线粒体自噬检测技术的组合,包括跨物种评估,将提高线粒体自噬测量的准确性,并有助于更好地理解线粒体自噬在健康和疾病中的作用。