半参数模型中捆绑参数的筛M定理及其在删失数据线性模型有效估计中的应用

A SIEVE M-THEOREM FOR BUNDLED PARAMETERS IN SEMIPARAMETRIC MODELS, WITH APPLICATION TO THE EFFICIENT ESTIMATION IN A LINEAR MODEL FOR CENSORED DATA.

作者信息

Ding Ying, Nan Bin

机构信息

Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109-2029.

出版信息

Ann Stat. 2011;39(6):2795-3443.

DOI:
Abstract

In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the unspecified error distribution function involves the regression coefficients. Motivated by developing an efficient estimating method for the regression parameters, we propose a general sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory for the sieve maximum likelihood estimation in the linear regression model for censored survival data. The numerical implementation of the proposed estimating method can be achieved through the conventional gradient-based search algorithms such as the Newton-Raphson algorithm. We show that the proposed estimator is consistent and asymptotically normal and achieves the semiparametric efficiency bound. Simulation studies demonstrate that the proposed method performs well in practical settings and yields more efficient estimates than existing estimating equation based methods. Illustration with a real data example is also provided.

摘要

在许多由两种类型的参数参数化的半参数模型中——一个感兴趣的欧几里得参数和一个无限维干扰参数,这两个参数捆绑在一起,即干扰参数是一个未知函数,其自变量包含感兴趣的参数。例如,在一个用于删失生存数据的线性回归模型中,未指定的误差分布函数涉及回归系数。出于为回归参数开发一种有效估计方法的动机,我们提出了一个针对捆绑参数的一般筛法M定理,并将该定理应用于推导删失生存数据线性回归模型中筛法最大似然估计的渐近理论。所提出的估计方法的数值实现可以通过传统的基于梯度的搜索算法(如牛顿 - 拉夫森算法)来完成。我们表明所提出的估计量是一致的且渐近正态的,并达到了半参数效率界。模拟研究表明,所提出的方法在实际设置中表现良好,并且比现有的基于估计方程的方法产生更有效的估计。还提供了一个实际数据示例的说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索