Hagenmüller David, Schachenmayer Johannes, Schütz Stefan, Genes Claudiu, Pupillo Guido
IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France.
Max Planck Institute for the Science of Light, Staudtstraße 2, D-91058 Erlangen, Germany.
Phys Rev Lett. 2017 Dec 1;119(22):223601. doi: 10.1103/PhysRevLett.119.223601. Epub 2017 Nov 28.
We theoretically investigate charge transport through electronic bands of a mesoscopic one-dimensional system, where interband transitions are coupled to a confined cavity mode, initially prepared close to its vacuum. This coupling leads to light-matter hybridization where the dressed fermionic bands interact via absorption and emission of dressed cavity photons. Using a self-consistent nonequilibrium Green's function method, we compute electronic transmissions and cavity photon spectra and demonstrate how light-matter coupling can lead to an enhancement of charge conductivity in the steady state. We find that depending on cavity loss rate, electronic bandwidth, and coupling strength, the dynamics involves either an individual or a collective response of Bloch states, and we explain how this affects the current enhancement. We show that the charge conductivity enhancement can reach orders of magnitudes under experimentally relevant conditions.
我们从理论上研究了电荷通过介观一维系统电子能带的输运,其中带间跃迁与一个受限腔模耦合,该腔模最初制备在接近其真空的状态。这种耦合导致光与物质的杂化,其中被修饰的费米能带通过被修饰的腔光子的吸收和发射相互作用。使用自洽非平衡格林函数方法,我们计算了电子透射率和腔光子光谱,并证明了光与物质的耦合如何在稳态下导致电荷电导率的增强。我们发现,根据腔损耗率、电子带宽和耦合强度,动力学过程涉及布洛赫态的个体或集体响应,并且我们解释了这如何影响电流增强。我们表明,在实验相关条件下,电荷电导率的增强可以达到几个数量级。