Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265, 34136 Trieste, Italy; Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, S.S. 14, km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy.
Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265, 34136 Trieste, Italy.
Curr Opin Neurobiol. 2018 Jun;50:50-55. doi: 10.1016/j.conb.2017.12.009. Epub 2017 Dec 28.
Interfacing the nervous system with devices able to efficiently record or modulate the electrical activity of neuronal cells represents the underlying foundation of future theranostic applications in neurology and of current openings in neuroscience research. These devices, usually sensing cell activity via microelectrodes, should be characterized by safe working conditions in the biological milieu together with a well-controlled operation-life. The stable device/neuronal electrical coupling at the interface requires tight interactions between the electrode surface and the cell membrane. This neuro-electrode hybrid represents the hyphen between the soft nature of neural tissue, generating electrical signals via ion motions, and the rigid realm of microelectronics and medical devices, dealing with electrons in motion. Efficient integration of these entities is essential for monitoring, analyzing and controlling neuronal signaling but poses significant technological challenges. Improving the cell/electrode interaction and thus the interface performance requires novel engineering of (nano)materials: tuning at the nanoscale electrode's properties may lead to engineer interfacing probes that better camouflaged with their biological target. In this brief review, we highlight the most recent concepts in nanotechnologies and nanomaterials that might help reducing the mismatch between tissue and electrode, focusing on the device's mechanical properties and its biological integration with the tissue.
将神经系统与能够有效记录或调节神经元细胞电活动的设备相连接,是神经学科未来治疗应用和当前神经科学研究新领域的基础。这些设备通常通过微电极来感知细胞活动,应该具有在生物环境中的安全工作条件以及良好的控制操作寿命。在界面处,设备与神经元电偶联的稳定性需要电极表面与细胞膜之间的紧密相互作用。这种神经-电极混合体代表了神经组织的柔软性质与微电子学和医疗器械的刚性领域之间的连接,神经组织通过离子运动产生电信号,而微电子学和医疗器械则处理运动中的电子。这些实体的有效集成对于监测、分析和控制神经元信号至关重要,但也带来了重大的技术挑战。改善细胞/电极相互作用,从而提高界面性能,需要对(纳米)材料进行新的工程设计:在纳米尺度上调整电极的性质,可以设计出更好地与生物靶标相匹配的界面探针。在这篇简要综述中,我们重点介绍了纳米技术和纳米材料的最新概念,这些概念可能有助于减少组织与电极之间的不匹配,关注器件的机械性能及其与组织的生物集成。