Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, Room LC-501A, New York, NY 10065, USA; Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy.
Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, Room LC-501A, New York, NY 10065, USA.
Structure. 2018 Feb 6;26(2):356-367.e3. doi: 10.1016/j.str.2017.11.020. Epub 2017 Dec 28.
Several class-A G protein-coupled receptor (GPCR) proteins act as constitutive phospholipid scramblases catalyzing the transbilayer translocation of >10,000 phospholipids per second when reconstituted into synthetic vesicles. To address the molecular mechanism by which these proteins facilitate rapid lipid scrambling, we carried out large-scale ensemble atomistic molecular dynamics simulations of the opsin GPCR. We report that, in the process of scrambling, lipid head groups traverse a dynamically revealed hydrophilic pathway in the region between transmembrane helices 6 and 7 of the protein while their hydrophobic tails remain in the bilayer environment. We present quantitative kinetic models of the translocation process based on Markov State Model analysis. As key residues on the lipid translocation pathway are conserved within the class-A GPCR family, our results illuminate unique aspects of GPCR structure and dynamics while providing a rigorous basis for the design of variants of these proteins with defined scramblase activity.
几种 A 类 G 蛋白偶联受体 (GPCR) 蛋白作为组成型磷脂翻转酶,当重构成人工脂质体时,每秒可催化 >10000 个磷脂的跨膜翻转。为了解这些蛋白促进快速脂质翻转的分子机制,我们对视蛋白 GPCR 进行了大规模的集合原子分子动力学模拟。我们报告称,在翻转过程中,脂质头部基团在蛋白质跨膜螺旋 6 和 7 之间的区域内穿过一个动态揭示的亲水区,而它们的疏水尾部仍留在双层环境中。我们基于 Markov 状态模型分析,提出了脂质转运过程的定量动力学模型。由于脂质转运途径上的关键残基在 A 类 GPCR 家族中是保守的,我们的结果阐明了 GPCR 结构和动力学的独特方面,同时为这些蛋白的具有定义的翻转酶活性的变体的设计提供了严格的基础。