Suppr超能文献

基于电子健康记录数据的成人 1 型糖尿病识别算法的验证。

Validation of an algorithm for identifying type 1 diabetes in adults based on electronic health record data.

机构信息

Institute for Health Research, Kaiser Permanente Colorado, Denver, CO, USA.

Division of Endocrinology, Colorado Permanente Medical Group, Denver, CO, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2018 Oct;27(10):1053-1059. doi: 10.1002/pds.4377. Epub 2018 Jan 2.

Abstract

PURPOSE

Algorithms using information from electronic health records to identify adults with type 1 diabetes have not been well studied. Such algorithms would have applications in pharmacoepidemiology, drug safety research, clinical trials, surveillance, and quality improvement. Our main objectives were to determine the positive predictive value for identifying type 1 diabetes in adults using a published algorithm (developed by Klompas et al) and to compare it to a simple requirement that the majority of diabetes diagnosis codes be type 1.

METHODS

We applied the Klompas algorithm and the diagnosis code criterion to a cohort of 66 690 adult Kaiser Permanente Colorado members with diabetes. We reviewed 220 charts of those identified as having type 1 diabetes and calculated positive predictive values.

RESULTS

The Klompas algorithm identified 3286 (4.9% of 66 690) adults with diabetes as having type 1 diabetes. Based on chart reviews, the overall positive predictive value was 94.5%. The requirement that the majority of diabetes diagnosis codes be type 1 identified 3000 (4.5%) as having type 1 diabetes and had a positive predictive value of 96.4%. However, the algorithm criterion involving dispensing of urine acetone test strips performed poorly, with a positive predictive value of 20.0%.

CONCLUSIONS

Data from electronic health records can be used to accurately identify adults with type 1 diabetes. When identifying adults with type 1 diabetes, we recommend either a modified version of the Klompas algorithm without the urine acetone test strips criterion or the requirement that the majority of diabetes diagnosis codes be type 1 codes.

摘要

目的

利用电子健康记录中的信息来识别 1 型糖尿病成人的算法尚未得到充分研究。此类算法可应用于药物流行病学、药物安全研究、临床试验、监测和质量改进。我们的主要目标是确定使用已发表的算法(由 Klompas 等人开发)识别成人 1 型糖尿病的阳性预测值,并将其与大多数糖尿病诊断代码为 1 型的简单要求进行比较。

方法

我们将 Klompas 算法和诊断代码标准应用于 66690 名科罗拉多州 Kaiser Permanente 成年糖尿病患者队列。我们对被确定为 1 型糖尿病的 220 份病历进行了回顾,并计算了阳性预测值。

结果

Klompas 算法识别出 3286 名(66690 名中的 4.9%)患有 1 型糖尿病的成年人。基于图表审查,总体阳性预测值为 94.5%。要求大多数糖尿病诊断代码为 1 型的方法确定了 3000 名(4.5%)患有 1 型糖尿病,阳性预测值为 96.4%。然而,涉及尿液丙酮测试条配药的算法标准表现不佳,阳性预测值为 20.0%。

结论

电子健康记录中的数据可用于准确识别 1 型糖尿病成人。在识别 1 型糖尿病成人时,我们建议使用没有尿液丙酮测试条标准的改良版 Klompas 算法,或要求大多数糖尿病诊断代码为 1 型代码。

相似文献

1
Validation of an algorithm for identifying type 1 diabetes in adults based on electronic health record data.
Pharmacoepidemiol Drug Saf. 2018 Oct;27(10):1053-1059. doi: 10.1002/pds.4377. Epub 2018 Jan 2.
4
Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records.
Am J Obstet Gynecol. 2018 Jun;218(6):610.e1-610.e7. doi: 10.1016/j.ajog.2018.02.002. Epub 2018 Feb 9.
7
Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data.
Diabetes Care. 2013 Apr;36(4):914-21. doi: 10.2337/dc12-0964. Epub 2012 Nov 27.
8
Detection of Diabetes Status and Type in Youth Using Electronic Health Records: The SEARCH for Diabetes in Youth Study.
Diabetes Care. 2020 Oct;43(10):2418-2425. doi: 10.2337/dc20-0063. Epub 2020 Jul 31.
9
Development and validation of algorithms to identify acute diverticulitis.
Pharmacoepidemiol Drug Saf. 2015 Jan;24(1):27-37. doi: 10.1002/pds.3708. Epub 2014 Sep 25.

引用本文的文献

1
Enabling reproducible type 1 diabetes polygenic risk scoring for clinical and translational applications.
medRxiv. 2025 Jul 17:2025.07.15.25331523. doi: 10.1101/2025.07.15.25331523.
2
Trends and Disparities in Technology Use and Glycemic Control in Type 1 Diabetes.
JAMA Netw Open. 2025 Aug 1;8(8):e2526353. doi: 10.1001/jamanetworkopen.2025.26353.
4
Comparison of the association between COVID-19 and new onset diabetes in a regional and national dataset.
Diabetes Res Clin Pract. 2025 Jun;224:112190. doi: 10.1016/j.diabres.2025.112190. Epub 2025 Apr 17.
7
Trends in obesity and glucagon-like peptide-1 receptor agonist prescriptions in type 1 diabetes in the United States.
Diabetes Obes Metab. 2025 Jun;27(6):2967-2976. doi: 10.1111/dom.16300. Epub 2025 Mar 3.
9
New-Onset Type 1 and Type 2 Diabetes Among Korean Youths During the COVID-19 Pandemic.
JAMA Pediatr. 2025 Feb 1;179(2):155-162. doi: 10.1001/jamapediatrics.2024.5068.
10
Overcoming therapeutic inertia in newly diagnosed type 2 diabetes: Protocol of a randomized, quality improvement trial.
Contemp Clin Trials. 2025 Jan;148:107751. doi: 10.1016/j.cct.2024.107751. Epub 2024 Nov 17.

本文引用的文献

1
Building Data Infrastructure to Evaluate and Improve Quality: PCORnet.
J Oncol Pract. 2015 May;11(3):204-6. doi: 10.1200/JOP.2014.003194.
2
The HMO Research Network Virtual Data Warehouse: A Public Data Model to Support Collaboration.
EGEMS (Wash DC). 2014 Mar 24;2(1):1049. doi: 10.13063/2327-9214.1049. eCollection 2014.
3
Trends in diabetes incidence among 7 million insured adults, 2006-2011: the SUPREME-DM project.
Am J Epidemiol. 2015 Jan 1;181(1):32-9. doi: 10.1093/aje/kwu255. Epub 2014 Dec 16.
7
The prevalence of type 1 diabetes in the United States.
Epidemiology. 2013 Sep;24(5):773-4. doi: 10.1097/EDE.0b013e31829ef01a.
8
Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data.
Diabetes Care. 2013 Apr;36(4):914-21. doi: 10.2337/dc12-0964. Epub 2012 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验