Li Xiang, Liu Haifeng, Yang Jingang, Xie Guotong, Xu Meilin, Yang Yuejin
IBM Research - China, Beijing, China.
Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China.
Stud Health Technol Inform. 2017;245:476-480.
Acute myocardial infarction is a major cause of hospitalization and mortality in China, where ST-elevation myocardial infarction (STEMI) is more severe and has a higher mortality rate. Accurate and interpretable prediction of in-hospital mortality is critical for STEMI patient clinical decision making. In this study, we used interpretable machine learning approaches to build in-hospital mortality prediction models for STEMI patients from Chinese Acute Myocardial Infarction (CAMI) registry data. We first performed cohort construction and feature engineering on CAMI data to generate an available dataset and identify potential predictors. Then several supervised learning methods with good interpretability, including generalized linear models, decision tree models, and Bayes models, were applied to build prediction models. The experimental results show that our models achieve higher prediction performance (AUC = 0.80~0.85) than the previous in-hospital mortality prediction STEMI models and are also easily interpretable for clinical decision support.
急性心肌梗死是中国住院和死亡的主要原因,其中ST段抬高型心肌梗死(STEMI)更为严重,死亡率更高。准确且可解释的院内死亡率预测对于STEMI患者的临床决策至关重要。在本研究中,我们使用可解释的机器学习方法,基于中国急性心肌梗死(CAMI)登记数据构建STEMI患者的院内死亡率预测模型。我们首先对CAMI数据进行队列构建和特征工程,以生成可用数据集并识别潜在预测因素。然后应用几种具有良好可解释性的监督学习方法,包括广义线性模型、决策树模型和贝叶斯模型,来构建预测模型。实验结果表明,我们的模型比之前的STEMI院内死亡率预测模型具有更高的预测性能(AUC = 0.80~0.85),并且对于临床决策支持也易于解释。