Suppr超能文献

用于心肌梗死后院内死亡率的可解释性SHAP-XGBoost模型。

Explainable SHAP-XGBoost models for in-hospital mortality after myocardial infarction.

作者信息

Tarabanis Constantine, Kalampokis Evangelos, Khalil Mahmoud, Alviar Carlos L, Chinitz Larry A, Jankelson Lior

机构信息

Leon H. Charney Division of Cardiology, NYU Langone Health, New York University School of Medicine, New York, New York.

Information Systems Laboratory, University of Macedonia, Thessaloniki, Greece.

出版信息

Cardiovasc Digit Health J. 2023 Jun 14;4(4):126-132. doi: 10.1016/j.cvdhj.2023.06.001. eCollection 2023 Aug.

Abstract

BACKGROUND

A lack of explainability in published machine learning (ML) models limits clinicians' understanding of how predictions are made, in turn undermining uptake of the models into clinical practice.

OBJECTIVE

The purpose of this study was to develop explainable ML models to predict in-hospital mortality in patients hospitalized for myocardial infarction (MI).

METHODS

Adult patients hospitalized for an MI were identified in the National Inpatient Sample between January 1, 2012, and September 30, 2015. The resulting cohort comprised 457,096 patients described by 64 predictor variables relating to demographic/comorbidity characteristics and in-hospital complications. The gradient boosting algorithm eXtreme Gradient Boosting (XGBoost) was used to develop explainable models for in-hospital mortality prediction in the overall cohort and patient subgroups based on MI type and/or sex.

RESULTS

The resulting models exhibited an area under the receiver operating characteristic curve (AUC) ranging from 0.876 to 0.942, specificity 82% to 87%, and sensitivity 75% to 87%. All models exhibited high negative predictive value ≥0.974. The SHapley Additive exPlanation (SHAP) framework was applied to explain the models. The top predictor variables of increasing and decreasing mortality were age and undergoing percutaneous coronary intervention, respectively. Other notable findings included a decreased mortality risk associated with certain patient subpopulations with hyperlipidemia and a comparatively greater risk of death among women below age 55 years.

CONCLUSION

The literature lacks explainable ML models predicting in-hospital mortality after an MI. In a national registry, explainable ML models performed best in ruling out in-hospital death post-MI, and their explanation illustrated their potential for guiding hypothesis generation and future study design.

摘要

背景

已发表的机器学习(ML)模型缺乏可解释性,这限制了临床医生对预测过程的理解,进而阻碍了这些模型在临床实践中的应用。

目的

本研究的目的是开发可解释的ML模型,以预测因心肌梗死(MI)住院患者的院内死亡率。

方法

在2012年1月1日至2015年9月30日期间的全国住院患者样本中识别出因MI住院的成年患者。最终队列包括457,096名患者,由64个与人口统计学/合并症特征及院内并发症相关的预测变量描述。使用梯度提升算法极端梯度提升(XGBoost)为整个队列以及基于MI类型和/或性别的患者亚组开发用于院内死亡率预测的可解释模型。

结果

所得模型的受试者工作特征曲线下面积(AUC)范围为0.876至0.942,特异性为82%至87%,敏感性为75%至87%。所有模型均表现出较高的阴性预测值≥0.974。应用SHapley值加法解释(SHAP)框架来解释这些模型。死亡率上升和下降的首要预测变量分别是年龄和接受经皮冠状动脉介入治疗。其他显著发现包括某些高脂血症患者亚组的死亡风险降低,以及55岁以下女性的死亡风险相对较高。

结论

文献中缺乏预测MI后院内死亡率的可解释ML模型。在一项全国性登记研究中,可解释的ML模型在排除MI后院内死亡方面表现最佳,其解释说明了它们在指导假设生成和未来研究设计方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f6/10435947/fd65f0b18aab/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验