Suppr超能文献

一种用于阿尔茨海默病神经解剖特征描述的深度学习方法。

A Deep Learning Approach to Neuroanatomical Characterisation of Alzheimer's Disease.

作者信息

Ambastha Abhinit Kumar, Leong Tze-Yun

机构信息

Medical Computing Laboratory, School of Computing, National University of Singapore, Singapore.

出版信息

Stud Health Technol Inform. 2017;245:1249.

Abstract

Alzheimer's disease (AD) is a neurological degenerative disorder that leads to progressive mental deterioration. This work introduces a computational approach to improve our understanding of the progression of AD. We use ensemble learning methods and deep neural networks to identify salient structural correlations among brain regions that degenerate together in AD; this provides an understanding of how AD progresses in the brain. The proposed technique has a classification accuracy of 81.79% for AD against healthy subjects using a single modality imaging dataset.

摘要

阿尔茨海默病(AD)是一种导致进行性精神衰退的神经退行性疾病。这项工作引入了一种计算方法,以增进我们对AD进展的理解。我们使用集成学习方法和深度神经网络来识别在AD中共同退化的脑区之间显著的结构相关性;这有助于理解AD在大脑中的进展方式。使用单模态成像数据集时,所提出的技术针对AD与健康受试者的分类准确率为81.79%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验