Suppr超能文献

显著网络:一种研究阿尔茨海默病的新应用。

Salient networks: a novel application to study Alzheimer disease.

机构信息

Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", Via Giovanni Amendola 173, 70125, Bari, Italy.

Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70123, Bari, Italy.

出版信息

Biomed Eng Online. 2018 Nov 20;17(Suppl 1):162. doi: 10.1186/s12938-018-0566-5.

Abstract

BACKGROUND

Extracting fundamental information from data, thus underlining hidden structures or removing noisy information, is one of the most important aims in different scientific fields especially in biological and medical sciences. In this article, we propose an innovative complex network application able to identify salient links for detecting the effect of Alzheimer's disease on brain connectivity. We first build a network model of brain connectivity from structural Magnetic Resonance Imaging (MRI) data, then we study salient networks retrieved from the original ones.

RESULTS

Investigating informative power of the salient skeleton features in combination with those of the original networks we obtain an accuracy of [Formula: see text] for the distinction of Alzheimer disease (AD) patients from normal controls (NC). This performance significantly overcomes accuracy of the original network features. Moreover salient networks are able to correctly discriminate normal controls (NC) from AD patients and NC from subjects with mild cognitive impairment that will convert to AD (cMCI). These evaluations, performed on an independent dataset, give an accuracy of [Formula: see text] and [Formula: see text] respectively for NC-AD and NC-cMCI classifications. Therefore, most of the informative content of the original networks is kept after the 92 [Formula: see text] and 82 [Formula: see text] reduction respectively in the number of nodes and links. In addition, the present approach, applied to a publicly available MRI dataset from the Alzheimer Disease Neuroimaging Initiative (ADNI), brings out also some interesting aspects related to the topologies and hubs of the networks.

CONCLUSIONS

The experimental results demonstrate how salient networks can highlight important brain network characteristics and structural pathological changes, while reducing considerably data complexity and computational requirements.

摘要

背景

从数据中提取基本信息,从而突出隐藏的结构或去除嘈杂的信息,是不同科学领域(尤其是生物和医学科学)的最重要目标之一。在本文中,我们提出了一种创新的复杂网络应用程序,能够识别突出的链接,以检测阿尔茨海默病对大脑连通性的影响。我们首先从结构磁共振成像(MRI)数据构建大脑连通性网络模型,然后研究从原始网络中检索到的显著网络。

结果

通过研究突出骨架特征的信息量与原始网络特征的信息量相结合,我们得到了区分阿尔茨海默病(AD)患者与正常对照组(NC)的准确率为[Formula: see text]。这种性能显著优于原始网络特征的准确率。此外,显著网络能够正确区分正常对照组(NC)和 AD 患者以及从正常对照组(NC)到将转化为 AD(cMCI)的轻度认知障碍(MCI)患者。这些评估是在独立数据集上进行的,对于 NC-AD 和 NC-cMCI 分类,准确率分别为[Formula: see text]和[Formula: see text]。因此,在节点和链接数量分别减少 92%[Formula: see text]和 82%[Formula: see text]后,保留了原始网络的大部分信息内容。此外,本方法应用于阿尔茨海默病神经影像学倡议(ADNI)提供的公开可用的 MRI 数据集,还揭示了与网络拓扑结构和枢纽有关的一些有趣方面。

结论

实验结果表明,显著网络如何突出大脑网络特征和结构病理变化的重要性,同时大大降低数据复杂性和计算要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef5/6245497/4be712987a6f/12938_2018_566_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验