Suppr超能文献

利用无孔径扫描近场光学显微镜和共聚焦激光扫描显微镜对生物组织进行相关成像。

Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy.

作者信息

Stanciu Stefan G, Tranca Denis E, Hristu Radu, Stanciu George A

机构信息

Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, 060042, Romania.

出版信息

Biomed Opt Express. 2017 Nov 7;8(12):5374-5383. doi: 10.1364/BOE.8.005374. eCollection 2017 Dec 1.

Abstract

Apertureless scanning near-field optical microscopy (ASNOM) has attracted considerable interest over the past years as a result of its valuable contrast mechanisms and capabilities for optical resolutions in the nanoscale range. However, at this moment the intersections between ASNOM and the realm of bioimaging are scarce, mainly due to data interpretation difficulties linked to the limited body of work performed so far in this field and hence the reduced volume of supporting information. We propose an imaging approach that holds significant potential for alleviating this issue, consisting of correlative imaging of biological specimens using a multimodal system that incorporates ASNOM and confocal laser scanning microscopy (CLSM), which allows placing near-field data into a well understood context of anatomical relevance. We demonstrate this approach on zebrafish retinal tissue. The proposed method holds important implications for the in-depth understanding of biological items through the prism of ASNOM and CLSM data complementarity.

摘要

无孔径扫描近场光学显微镜(ASNOM)在过去几年中引起了广泛关注,这得益于其宝贵的对比度机制以及在纳米尺度范围内实现光学分辨率的能力。然而,目前ASNOM与生物成像领域的交叉研究较少,主要原因是与该领域目前有限的研究工作相关的数据解读困难,进而导致支持信息的数量减少。我们提出了一种成像方法,该方法在缓解这一问题方面具有巨大潜力,它由使用结合了ASNOM和共聚焦激光扫描显微镜(CLSM)的多模态系统对生物标本进行相关成像组成,这使得近场数据能够置于解剖学相关性明确的背景中。我们在斑马鱼视网膜组织上展示了这种方法。所提出的方法对于通过ASNOM和CLSM数据互补深入理解生物对象具有重要意义。

相似文献

1
Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy.
Biomed Opt Express. 2017 Nov 7;8(12):5374-5383. doi: 10.1364/BOE.8.005374. eCollection 2017 Dec 1.
3
Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin.
Beilstein J Nanotechnol. 2013 Sep 11;4:510-6. doi: 10.3762/bjnano.4.60. eCollection 2013.
4
Apertureless scanning near-field optical microscopy: the need for probe-vibration modeling.
Opt Lett. 2003 Nov 15;28(22):2147-9. doi: 10.1364/ol.28.002147.
6
Direct near-field optical imaging of higher order plasmonic resonances.
Nano Lett. 2008 Oct;8(10):3155-9. doi: 10.1021/nl801396r. Epub 2008 Sep 13.
7
Simultaneous scanning near-field optical and X-ray diffraction microscopy for correlative nanoscale structure-property characterization.
J Synchrotron Radiat. 2019 Sep 1;26(Pt 5):1790-1796. doi: 10.1107/S1600577519008609. Epub 2019 Aug 15.
10
Apertureless scanning near-field optical microscopy for ion exchange channel waveguide characterization.
J Microsc. 2003 Mar;209(Pt 3):155-61. doi: 10.1046/j.1365-2818.2003.01106.x.

引用本文的文献

1
In Depth Mapping of Mesoporous Silica Nanoparticles in Malignant Glioma Cells Using Scattering-Type Scanning Near-Field Optical Microscopy.
Chem Biomed Imaging. 2024 Oct 19;2(12):842-849. doi: 10.1021/cbmi.4c00053. eCollection 2024 Dec 23.
2
Thermal near-field scattering characteristics for dielectric materials.
Sci Rep. 2023 Oct 16;13(1):17595. doi: 10.1038/s41598-023-44920-y.
3
Label-free nanoscale mapping of intracellular organelle chemistry.
Commun Biol. 2023 May 31;6(1):583. doi: 10.1038/s42003-023-04943-7.
4
Scattering-type Scanning Near-Field Optical Microscopy of Polymer-Coated Gold Nanoparticles.
ACS Omega. 2022 Mar 24;7(13):11353-11362. doi: 10.1021/acsomega.2c00410. eCollection 2022 Apr 5.
5
Infrared nanoscopy and tomography of intracellular structures.
Commun Biol. 2021 Nov 30;4(1):1341. doi: 10.1038/s42003-021-02876-7.
6
Melanins as Sustainable Resources for Advanced Biotechnological Applications.
Glob Chall. 2020 Nov 25;5(2):2000102. doi: 10.1002/gch2.202000102. eCollection 2021 Feb.

本文引用的文献

2
Nanoscale mapping of refractive index by using scattering-type scanning near-field optical microscopy.
Nanomedicine. 2018 Jan;14(1):47-50. doi: 10.1016/j.nano.2017.08.016. Epub 2017 Sep 5.
3
Multi-photon microscopy in cardiovascular research.
Methods. 2017 Nov 1;130:79-89. doi: 10.1016/j.ymeth.2017.04.013. Epub 2017 Apr 18.
4
T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments.
Nature. 2016 Oct 27;538(7626):518-522. doi: 10.1038/nature19801. Epub 2016 Oct 17.
6
Retina regeneration in zebrafish.
Curr Opin Genet Dev. 2016 Oct;40:41-47. doi: 10.1016/j.gde.2016.05.009. Epub 2016 Jun 6.
7
Nanoscale chemical imaging by photoinduced force microscopy.
Sci Adv. 2016 Mar 25;2(3):e1501571. doi: 10.1126/sciadv.1501571. eCollection 2016 Mar.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验