Suppr超能文献

3D 多孔 MXene (TiC)/还原氧化石墨烯杂化薄膜用于先进的锂离子存储。

3D Porous MXene (TiC)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage.

机构信息

Key Laboratory of Graphene Technologies and Applications of Zhejiang Province and Advanced Li-ion Battery Engineering Lab, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Zhejiang 315201, P. R. China.

University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing 100049, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3634-3643. doi: 10.1021/acsami.7b17386. Epub 2018 Jan 16.

Abstract

MXenes, as a new family of 2D materials, can be used as film electrodes in energy storage devices because of their hydrophilic surface, metallic conductivity, and rich surface chemistries. However, the poor ion transport of MXene film electrodes causes a great loss of surface reactivity, which significantly inhibits the full exploitation of the potential of MXene-based materials. To solve this issue, we report a facile electrolyte-induced self-assembly method to construct a 3D porous structure in the MXene-rGO hybrid film, which effectively facilitates rapid diffusion and transport of electrolyte ions in the film electrode while still maintaining high electrical conductivity. When the hybrid film is employed as electrode materials for lithium-ion batteries, it exhibits high specific capacity of 335.5 mA h g at 0.05 A g and good rate capability of 30% capacitance retention at 4 A g. Additionally, the film electrode exhibits excellent cycling stability without capacity decay after 1000 cycles under high rates (1 A g) owing to its stable structure. Furthermore, the electrochemical analysis also demonstrates that the novel 3D porous microstructure plays an important role in the fast reaction kinetics and high capacity of the MXene-rGO hybrid film electrode. This work may provide a new strategy to solve the issues related to poor ionic transport in MXene-based film electrodes.

摘要

MXenes 作为 2D 材料家族的新成员,由于其亲水表面、金属导电性和丰富的表面化学性质,可被用作储能器件的薄膜电极。然而,MXene 薄膜电极较差的离子传输性能导致表面反应性的大量损失,这极大地抑制了 MXene 基材料潜力的充分发挥。为了解决这个问题,我们报告了一种简便的电解质诱导自组装方法,在 MXene-rGO 杂化薄膜中构建了 3D 多孔结构,这有效地促进了电解质离子在薄膜电极中的快速扩散和传输,同时仍保持高导电性。当将该杂化薄膜用作锂离子电池的电极材料时,其在 0.05 A g 的电流密度下表现出 335.5 mA h g 的高比容量,在 4 A g 的电流密度下仍具有 30%的电容保持率的良好倍率性能。此外,该薄膜电极在高倍率(1 A g)下循环 1000 次后仍具有出色的循环稳定性,没有容量衰减,这归因于其稳定的结构。此外,电化学分析还表明,新型 3D 多孔微结构在 MXene-rGO 杂化薄膜电极的快速反应动力学和高容量中发挥了重要作用。这项工作可能为解决 MXene 基薄膜电极中离子输运性能差的问题提供了一种新策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验