Suppr超能文献

淀粉样蛋白病理破坏星形胶质细胞中的神经递质释放。

Amyloid pathology disrupts gliotransmitter release in astrocytes.

机构信息

Indian Institute of Science Education and Research Pune, Pune, India.

出版信息

PLoS Comput Biol. 2022 Aug 1;18(8):e1010334. doi: 10.1371/journal.pcbi.1010334. eCollection 2022 Aug.

Abstract

Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer's disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation.

摘要

淀粉样蛋白-β(Aβ)的积累与突触功能障碍和星形胶质细胞钙动态平衡的不稳定性有关。越来越多的证据支持星形胶质细胞通过钙介导的神经胶质传递作为突触传递的活跃调节剂。然而,将 Aβ 信号、星形胶质细胞钙动力学和神经胶质传递联系起来的机制细节尚不清楚。我们开发了一个生物物理模型,该模型描述了当海马神经元释放的谷氨酸刺激单个星形胶质细胞过程时,钙信号和随之而来的神经胶质递质释放的时空动力学。该模型通过 kiss-and-run 和全融合胞吐作用准确地捕捉了微区钙信号和谷氨酸释放的时间动态。我们研究了两种受 Aβ 影响的关键钙调节机制的作用:质膜钙泵(PMCA)和代谢型谷氨酸受体(mGluRs)。当我们在星形胶质细胞模型中实施这些受 Aβ 影响的分子变化时,它导致钙事件的速率和同步性增加。我们的模型还再现了以前与 Aβ 相关的异常钙活动的几项发现,例如细胞内钙水平升高和自发性钙活动增加,以及钙事件的同步性。该研究建立了阿尔茨海默病(AD)中过度活跃的星形胶质细胞与 mGluR 和 PMCA 功能的 Aβ 诱导修饰之间的因果联系。类似于神经递质释放,神经胶质递质胞吐作用紧密跟踪星形胶质细胞突起中的钙变化,从而保证了星形胶质细胞对突触信号的紧密控制。然而,AD 相关钙变化对星形胶质细胞中神经胶质递质释放的下游影响尚不清楚。我们的结果表明,星形胶质细胞中钙信号的改变导致胞吐作用的速率增强,从而迅速耗尽停泊的囊泡,破坏钙事件和囊泡释放之间的关键时间对应关系。我们提出,在 Aβ 积累的情况下,星形胶质细胞中钙事件和神经胶质传递之间的时间对应关系的丧失病理性地改变了星形胶质细胞对突触传递的调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea99/9371304/7fb084004174/pcbi.1010334.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验