Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):513-518. doi: 10.1073/pnas.1714401115. Epub 2018 Jan 3.
Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.
蛋白质动力学通常可以通过速率方程很好地捕捉到,这些方程可以预测二态反应的指数衰减。在这里,我们描述了一个显著的例外。电子转移酶 QSOX(quiescin sulfhydryl oxidase)是两个功能不同的结构域的天然融合体,它在开放结构域和封闭结构域之间转换,具有明显的幂律动力学。通过在纳秒到毫秒的时间尺度上进行单分子 FRET 实验,我们表明,这种异常的开-闭动力学是由于对一系列无序结构域取向的缓慢抽样。虽然底物可以加速动力学,从而表明底物诱导酶向另一种自由能景观的转变,但在电子负载下也保持了幂律行为。我们的结果表明,开放构象的缓慢抽样是由各种结构域间相互作用引起的,这意味着自由能景观崎岖不平,从而为多结构域酶中的动态无序提供了一种通用机制。