Suppr超能文献

观点:快速动力学如何影响蛋白质机器中的缓慢功能。

Perspective: How Fast Dynamics Affect Slow Function in Protein Machines.

机构信息

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

出版信息

J Phys Chem B. 2023 Jun 1;127(21):4687-4693. doi: 10.1021/acs.jpcb.3c00705. Epub 2023 May 17.

Abstract

Internal motions in proteins take place on a broad range of time- and space-scales. The potential roles of these dynamics in the biochemical functions of proteins have intrigued biophysicists for many years, and multiple mechanisms to couple motions to function have been proposed. Some of these mechanisms have relied on equilibrium concepts. For example, the modulation of dynamics was proposed to change the entropy of a protein, hence affecting processes such as binding. This so-called dynamic allostery scenario has been demonstrated in several recent experiments. Perhaps even more intriguing may be models that involve out-of-equilibrium operation, which by necessity require the input of energy. We discuss several recent experimental studies that expose such potential mechanisms for coupling dynamics and function. In Brownian ratchets, for example, directional motion is promoted by switching a protein between two free energy surfaces. An additional example involves the effect of microsecond domain-closure dynamics of an enzyme on its much slower chemical cycle. These observations lead us to propose a novel two-time-scale paradigm for the activity of protein machines: fast equilibrium fluctuations take place on the microsecond-millisecond time scale, while on a slower time scale, free energy is invested in order to push the system out of equilibrium and drive functional transitions. Motions on the two time scales affect each other and are essential for the overall function of these machines.

摘要

蛋白质内部的运动发生在广泛的时间和空间尺度上。这些动力学在蛋白质生化功能中的潜在作用多年来一直吸引着生物物理学家的兴趣,并且已经提出了多种将运动与功能相耦合的机制。其中一些机制依赖于平衡概念。例如,通过调节动力学来改变蛋白质的熵,从而影响结合等过程。这种所谓的动态变构场景在最近的几项实验中得到了证实。也许更有趣的是涉及非平衡操作的模型,这些模型必然需要能量的输入。我们讨论了几项最近的实验研究,这些研究揭示了将动力学和功能耦合的潜在机制。例如,在布朗棘轮中,通过在两个自由能表面之间切换蛋白质来促进定向运动。另一个例子涉及酶的微秒域闭合动力学对其慢得多的化学循环的影响。这些观察结果使我们提出了蛋白质机器活性的新的双时间尺度范例:快速平衡波动发生在微秒到毫秒的时间尺度上,而在较慢的时间尺度上,需要投入自由能来推动系统脱离平衡并驱动功能转变。两个时间尺度上的运动相互影响,是这些机器整体功能的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a09a/10240489/1d37d9ab1811/jp3c00705_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验