Suppr超能文献

使用生物信息学方法鉴定黑色素瘤中表观遗传改变的基因和潜在基因靶点。

Identification of epigenetically altered genes and potential gene targets in melanoma using bioinformatic methods.

作者信息

Duan Honghao, Jiang Ke, Wei Dengke, Zhang Lijun, Cheng Deliang, Lv Min, Xu Yuben, He Aimin

机构信息

Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.

出版信息

Onco Targets Ther. 2017 Dec 20;11:9-15. doi: 10.2147/OTT.S146663. eCollection 2018.

Abstract

This study aimed to analyze epigenetically and genetically altered genes in melanoma to get a better understanding of the molecular circuitry of melanoma and identify potential gene targets for the treatment of melanoma. The microarray data of GSE31879, including mRNA expression profiles (seven melanoma and four melanocyte samples) and DNA methylation profiles (seven melanoma and five melanocyte samples), were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially methylated positions (DMPs) were screened using the linear models for microarray data (limma) package in melanoma compared with melanocyte samples. Gene ontology (GO) and pathway enrichment analysis of the DEGs were carried out using the Database for Annotation, Visualization, and Integrated Discovery. Moreover, differentially methylated genes (DMGs) were identified, and a transcriptional regulatory network was constructed using the University of California Santa Cruz genome browser database. A total of 1,215 DEGs (199 upregulated and 1,016 downregulated) and 14,094 DMPs (10,450 upregulated and 3,644 downregulated) were identified in melanoma compared with melanocyte samples. Additionally, the upregulated and downregulated DEGs were significantly associated with different GO terms and pathways, such as pigment cell differentiation, biosynthesis, and metabolism. Furthermore, the transcriptional regulatory network showed that DMGs such as Aristaless-related homeobox (), damage-specific DNA binding protein 2 (), and myelin basic protein () had higher node degrees. Our results showed that several methylated genes (, , and ) may be involved in melanoma progression.

摘要

本研究旨在分析黑色素瘤中发生表观遗传和基因改变的基因,以更好地理解黑色素瘤的分子调控机制,并确定黑色素瘤治疗的潜在基因靶点。从基因表达综合数据库下载了GSE31879的微阵列数据,包括mRNA表达谱(7个黑色素瘤样本和4个黑素细胞样本)和DNA甲基化谱(7个黑色素瘤样本和5个黑素细胞样本)。使用微阵列数据的线性模型(limma)软件包筛选黑色素瘤与黑素细胞样本相比的差异表达基因(DEG)和差异甲基化位点(DMP)。使用注释、可视化和综合发现数据库对DEG进行基因本体(GO)和通路富集分析。此外,鉴定了差异甲基化基因(DMG),并使用加利福尼亚大学圣克鲁兹分校基因组浏览器数据库构建了转录调控网络。与黑素细胞样本相比,在黑色素瘤中总共鉴定出1215个DEG(199个上调和1016个下调)和14094个DMP(10450个上调和3644个下调)。此外,上调和下调的DEG与不同的GO术语和通路显著相关,如色素细胞分化、生物合成和代谢。此外,转录调控网络显示,无尾相关同源框()、损伤特异性DNA结合蛋白2()和髓鞘碱性蛋白()等DMG具有较高的节点度。我们的结果表明,几个甲基化基因(、和)可能参与黑色素瘤的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef75/5741985/0fea76b944ec/ott-11-009Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验