School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA.
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
Mol Cell. 2018 Jan 4;69(1):146-157.e3. doi: 10.1016/j.molcel.2017.12.007.
CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses.
CRISPR-Cas 系统为基因组工程提供了多功能技术,但新 Cas 核酸酶和抗 CRISPR 蛋白的不断发现使其应用速度和可扩展性受到限制。在这里,我们展示了使用大肠杆菌无细胞转录-翻译 (TXTL) 系统来极大地提高 CRISPR 特性和验证的速度和可扩展性。TXTL 可以从添加的质粒和线性 DNA 中表达活性的 CRISPR 机制,并且 TXTL 可以输出 DNA 切割和基因抑制的定量动态——所有这些都无需蛋白质纯化或活细胞。我们使用 TXTL 来测量单个和多效 CRISPR 核酸酶的 DNA 切割和基因抑制动力学,预测大肠杆菌中基因抑制的强度,确定 24 种不同的抗 CRISPR 蛋白的特异性,并开发一种快速且可扩展的邻近基序筛选方法,该方法成功应用于五种未表征的 Cpf1 核酸酶。这些例子强调了 TXTL 如何能够促进 CRISPR 技术在其多种用途中的特性和应用。