Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China.
J Mol Cell Cardiol. 2018 Feb;115:104-114. doi: 10.1016/j.yjmcc.2018.01.003. Epub 2018 Jan 4.
Protein kinase C (PKC) isozymes contribute to the development of heart failure through dysregulation of Ca handling properties and disruption of contractile function in cardiomyocytes. However, the mechanisms by which PKC activation leads to Ca dysfunction are incompletely understood.
Shortly upon ventricular pressure overload in mice, we detected transient PKC activation that was associated with pulsed actin cytoskeletal rearrangement. In cultured cardiomyocytes, transient activation of PKC promoted long-term deleterious effects on the integrity of the transverse (T)- tubule system, resulting in a significant decrease in the amplitude and increase in the rising kinetics of Ca transients. Treatment with a PKCα/β inhibitor restored the synchronization of Ca transients and maintained T-tubule integrity in cultured cardiomyocytes. Supporting these data, PKCα/β inhibition protected against T-tubule remodeling and cardiac dysfunction in a mouse model of pressure overload-induced heart failure. Mechanistically, transient activation of PKC resulted in biphasic actin cytoskeletal rearrangement, consistent with in vivo observations in the pressure overloaded mouse model. Transient inhibition of actin polymerization or depolymerization resulted in severe T-tubule damage, recapitulating the T-tubule damage induced by PKC activation. Moreover, inhibition of stretch activated channels (SAC) protected against T-tubule remodeling and E-C coupling dysfunction induced by transient PKC activation and actin cytoskeletal rearrangement.
These data identify a key mechanistic link between transient PKC activation and long-term Ca handling defects through PKC-induced actin cytoskeletal rearrangement and resultant T-tubule damage.
蛋白激酶 C(PKC)同工酶通过调节心肌细胞的钙处理特性和破坏收缩功能,导致心力衰竭的发生。然而,PKC 激活导致钙功能障碍的机制尚不完全清楚。
在小鼠心室压力超负荷后不久,我们检测到短暂的 PKC 激活,与脉冲状肌动蛋白细胞骨架重排有关。在培养的心肌细胞中,PKC 的短暂激活导致 T 管系统完整性的长期有害影响,导致钙瞬变的幅度显著降低和上升动力学增加。PKCα/β 抑制剂的治疗恢复了钙瞬变的同步性,并维持了培养的心肌细胞中 T 管的完整性。支持这些数据,PKCα/β 抑制可防止压力超负荷诱导的心力衰竭小鼠模型中的 T 管重塑和心脏功能障碍。在机制上,短暂的 PKC 激活导致肌动蛋白细胞骨架的两相重排,与压力超负荷小鼠模型中的体内观察结果一致。短暂抑制肌动蛋白聚合或解聚导致 T 管严重损伤,再现了 PKC 激活和肌动蛋白细胞骨架重排诱导的 T 管损伤。此外,拉伸激活通道(SAC)的抑制可防止短暂的 PKC 激活和肌动蛋白细胞骨架重排引起的 T 管重塑和 E-C 偶联功能障碍。
这些数据确定了短暂的 PKC 激活与长期钙处理缺陷之间的关键机制联系,通过 PKC 诱导的肌动蛋白细胞骨架重排和由此产生的 T 管损伤。