Suppr超能文献

DVARS 的洞察与推断。

Insight and inference for DVARS.

机构信息

Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK; Institute for Advanced Studies, University of Warwick, Coventry, CV4 7AL, UK; Institute for Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.

Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7LF, UK; Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK.

出版信息

Neuroimage. 2018 May 15;172:291-312. doi: 10.1016/j.neuroimage.2017.12.098. Epub 2018 Jan 4.

Abstract

Estimates of functional connectivity using resting state functional Magnetic Resonance Imaging (rs-fMRI) are acutely sensitive to artifacts and large scale nuisance variation. As a result much effort is dedicated to preprocessing rs-fMRI data and using diagnostic measures to identify bad scans. One such diagnostic measure is DVARS, the spatial root mean square of the data after temporal differencing. A limitation of DVARS however is the lack of concrete interpretation of the absolute values of DVARS, and finding a threshold to distinguish bad scans from good. In this work we describe a sum of squares decomposition of the entire 4D dataset that shows DVARS to be just one of three sources of variation we refer to as D-var (closely linked to DVARS), S-var and E-var. D-var and S-var partition the sum of squares at adjacent time points, while E-var accounts for edge effects; each can be used to make spatial and temporal summary diagnostic measures. Extending the partitioning to global (and non-global) signal leads to a rs-fMRI DSE table, which decomposes the total and global variability into fast (D-var), slow (S-var) and edge (E-var) components. We find expected values for each component under nominal models, showing how D-var (and thus DVARS) scales with overall variability and is diminished by temporal autocorrelation. Finally we propose a null sampling distribution for DVARS-squared and robust methods to estimate this null model, allowing computation of DVARS p-values. We propose that these diagnostic time series, images, p-values and DSE table will provide a succinct summary of the quality of a rs-fMRI dataset that will support comparisons of datasets over preprocessing steps and between subjects.

摘要

使用静息态功能磁共振成像(rs-fMRI)进行功能连接的估计对伪影和大规模干扰变化非常敏感。因此,人们投入了大量精力来预处理 rs-fMRI 数据,并使用诊断措施来识别不良扫描。其中一种诊断措施是 DVARS,即数据经过时间差分后的空间均方根。然而,DVARS 的一个局限性是缺乏对 DVARS 绝对值的具体解释,也无法找到一个阈值来区分好的扫描和坏的扫描。在这项工作中,我们描述了一个 4D 数据集的平方和分解,表明 DVARS 只是我们称之为 D-var(与 DVARS 密切相关)、S-var 和 E-var 的三种变化源之一。D-var 和 S-var 在相邻时间点上划分平方和,而 E-var 则解释边缘效应;每个都可以用于制作空间和时间综合诊断测量。将分区扩展到全局(和非全局)信号,会得到 rs-fMRI DSE 表,它将总变异性和全局变异性分解为快变(D-var)、慢变(S-var)和边缘(E-var)成分。我们在名义模型下得到了每个分量的期望值,展示了 D-var(因此 DVARS)如何随总变异性缩放,并受到时间自相关的影响。最后,我们提出了一个用于 DVARS 平方的空样本分布和估计该空模型的稳健方法,从而可以计算 DVARS 的 p 值。我们建议这些诊断时间序列、图像、p 值和 DSE 表将提供 rs-fMRI 数据集质量的简洁摘要,支持在预处理步骤和受试者之间比较数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84f9/5915574/0b1c836b84e3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验