Barwinska-Sendra Anna, Baslé Arnaud, Waldron Kevin J, Un Sun
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS UMR 9198, CEA-Saclay, Gif-sur-Yvette, F-91198, France.
Phys Chem Chem Phys. 2018 Jan 24;20(4):2363-2372. doi: 10.1039/c7cp06829h.
The pathogenicity of Staphylococcus aureus is enhanced by having two superoxide dismutases (SODs): a Mn-specific SOD and another that can use either Mn or Fe. Using 94 GHz electron-nuclear double resonance (ENDOR) and electron double resonance detected (ELDOR)-NMR we show that, despite their different metal-specificities, their structural and electronic similarities extend down to their active-site H- and N-Mn(ii) hyperfine interactions. However these interactions, and hence the positions of these nuclei, are different in the inactive Mn-reconstituted Escherichia coli Fe-specific SOD. Density functional theory modelling attributes this to a different angular position of the E. coli H171 ligand. This likely disrupts the Mn-H171-E170' triad causing a shift in charge and in metal redox potential, leading to the loss of activity. This is supported by the correlated differences in the Mn(ii) zero-field interactions of the three SOD types and suggests that the triad is important for determining metal specific activity.
金黄色葡萄球菌拥有两种超氧化物歧化酶(SOD),即锰特异性SOD和另一种可使用锰或铁的SOD,这增强了其致病性。利用94吉赫兹电子-核双共振(ENDOR)和电子双共振检测(ELDOR)-核磁共振技术,我们发现,尽管它们具有不同的金属特异性,但其结构和电子相似性一直延伸到它们的活性位点H和N-Mn(ii)超精细相互作用。然而,在无活性的锰重构大肠杆菌铁特异性SOD中,这些相互作用以及因此这些原子核的位置是不同的。密度泛函理论建模将此归因于大肠杆菌H171配体的不同角位置。这可能会破坏Mn-H171-E170'三联体,导致电荷和金属氧化还原电位发生变化,从而导致活性丧失。三种SOD类型的Mn(ii)零场相互作用的相关差异支持了这一点,并表明该三联体对于确定金属特异性活性很重要。