Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
Procter & Gamble, Brussels Innovation Centre, Temselaan 100, 1853 Strombeek-Bever, Belgium.
Talanta. 2018 Mar 1;179:386-392. doi: 10.1016/j.talanta.2017.11.025. Epub 2017 Nov 20.
Calibration transfer or standardisation aims at creating a uniform spectral response on different spectroscopic instruments or under varying conditions, without requiring a full recalibration for each situation. In the current study, this strategy is applied to construct at-line multivariate calibration models and consequently employ them in-line in a continuous industrial production line, using the same spectrometer. Firstly, quantitative multivariate models are constructed at-line at laboratory scale for predicting the concentration of two main ingredients in hard surface cleaners. By regressing the Raman spectra of a set of small-scale calibration samples against their reference concentration values, partial least squares (PLS) models are developed to quantify the surfactant levels in the liquid detergent compositions under investigation. After evaluating the models performance with a set of independent validation samples, a univariate slope/bias correction is applied in view of transporting these at-line calibration models to an in-line manufacturing set-up. This standardisation technique allows a fast and easy transfer of the PLS regression models, by simply correcting the model predictions on the in-line set-up, without adjusting anything to the original multivariate calibration models. An extensive statistical analysis is performed in order to assess the predictive quality of the transferred regression models. Before and after transfer, the R and RMSEP of both models is compared for evaluating if their magnitude is similar. T-tests are then performed to investigate whether the slope and intercept of the transferred regression line are not statistically different from 1 and 0, respectively. Furthermore, it is inspected whether no significant bias can be noted. F-tests are executed as well, for assessing the linearity of the transfer regression line and for investigating the statistical coincidence of the transfer and validation regression line. Finally, a paired t-test is performed to compare the original at-line model to the slope/bias corrected in-line model, using interval hypotheses. It is shown that the calibration models of Surfactant 1 and Surfactant 2 yield satisfactory in-line predictions after slope/bias correction. While Surfactant 1 passes seven out of eight statistical tests, the recommended validation parameters are 100% successful for Surfactant 2. It is hence concluded that the proposed strategy for transferring at-line calibration models to an in-line industrial environment via a univariate slope/bias correction of the predicted values offers a successful standardisation approach.
校准转移或标准化旨在创建不同光谱仪器或不同条件下的统一光谱响应,而无需为每种情况进行全面重新校准。在本研究中,该策略应用于构建在线多变量校准模型,并随后在同一光谱仪中在线应用于连续工业生产线。首先,在实验室规模上构建在线定量多变量模型,以预测硬表面清洁剂中两种主要成分的浓度。通过将一组小规模校准样品的拉曼光谱回归到其参考浓度值,开发偏最小二乘(PLS)模型以定量研究中液体洗涤剂成分中的表面活性剂水平。在用一组独立验证样品评估模型性能后,应用单变量斜率/偏差校正将这些在线校准模型转移到在线制造设置中。这种标准化技术允许通过简单地校正在线设置上的模型预测,快速轻松地转移 PLS 回归模型,而无需对原始多变量校准模型进行任何调整。为了评估转移回归模型的预测质量,进行了广泛的统计分析。在转移前后,比较两个模型的 R 和 RMSEP,以评估其大小是否相似。然后进行 t 检验,以研究转移回归线的斜率和截距是否在统计上不同于 1 和 0。此外,检查是否没有明显的偏差。还执行 F 检验,以评估转移回归线的线性度以及研究转移和验证回归线的统计一致性。最后,使用区间假设执行配对 t 检验,以比较原始在线模型和斜率/偏差校正的在线模型。结果表明,经过斜率/偏差校正后,表面活性剂 1 和表面活性剂 2 的校准模型可以得到令人满意的在线预测。虽然表面活性剂 1 通过了八项统计测试中的七项,但推荐的验证参数对于表面活性剂 2 的成功率为 100%。因此,通过对预测值进行单变量斜率/偏差校正,将在线校准模型转移到在线工业环境的策略是成功的标准化方法。