Suppr超能文献

将基因组学应用于产碳青霉烯酶肠杆菌科细菌的实时监测与应对:来自复杂多机构KPC暴发的证据

Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak.

作者信息

Kwong Jason C, Lane Courtney R, Romanes Finn, Gonçalves da Silva Anders, Easton Marion, Cronin Katie, Waters Mary Jo, Tomita Takehiro, Stevens Kerrie, Schultz Mark B, Baines Sarah L, Sherry Norelle L, Carter Glen P, Mu Andre, Sait Michelle, Ballard Susan A, Seemann Torsten, Stinear Timothy P, Howden Benjamin P

机构信息

Doherty Applied Microbial Genomics, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

出版信息

PeerJ. 2018 Jan 3;6:e4210. doi: 10.7717/peerj.4210. eCollection 2018.

Abstract

BACKGROUND

Until recently, carbapenemase (KPC)-producing Enterobacteriaceae were rarely identified in Australia. Following an increase in the number of incident cases across the state of Victoria, we undertook a real-time combined genomic and epidemiological investigation. The scope of this study included identifying risk factors and routes of transmission, and investigating the utility of genomics to enhance traditional field epidemiology for informing management of established widespread outbreaks.

METHODS

All KPC-producing Enterobacteriaceae isolates referred to the state reference laboratory from 2012 onwards were included. Whole-genome sequencing was performed in parallel with a detailed descriptive epidemiological investigation of each case, using Illumina sequencing on each isolate. This was complemented with PacBio long-read sequencing on selected isolates to establish high-quality reference sequences and interrogate characteristics of KPC-encoding plasmids.

RESULTS

Initial investigations indicated that the outbreak was widespread, with 86 KPC-producing Enterobacteriaceae isolates ( 92%) identified from 35 different locations across metropolitan and rural Victoria between 2012 and 2015. Initial combined analyses of the epidemiological and genomic data resolved the outbreak into distinct nosocomial transmission networks, and identified healthcare facilities at the epicentre of KPC transmission. New cases were assigned to transmission networks in real-time, allowing focussed infection control efforts. PacBio sequencing confirmed a secondary transmission network arising from inter-species plasmid transmission. Insights from Bayesian transmission inference and analyses of within-host diversity informed the development of state-wide public health and infection control guidelines, including interventions such as an intensive approach to screening contacts following new case detection to minimise unrecognised colonisation.

CONCLUSION

A real-time combined epidemiological and genomic investigation proved critical to identifying and defining multiple transmission networks of KPC Enterobacteriaceae, while data from either investigation alone were inconclusive. The investigation was fundamental to informing infection control measures in real-time and the development of state-wide public health guidelines on carbapenemase-producing Enterobacteriaceae surveillance and management.

摘要

背景

直到最近,产碳青霉烯酶(KPC)的肠杆菌科细菌在澳大利亚仍很少被发现。随着维多利亚州全州发病病例数的增加,我们开展了一项实时的基因组与流行病学联合调查。本研究的范围包括确定危险因素和传播途径,以及研究基因组学在加强传统现场流行病学以指导已确立的广泛疫情管理方面的作用。

方法

纳入了2012年起送至州参考实验室的所有产KPC的肠杆菌科细菌分离株。对每个病例进行详细的描述性流行病学调查的同时,对每个分离株进行全基因组测序,采用Illumina测序技术。对选定的分离株进行PacBio长读长测序作为补充,以建立高质量的参考序列并研究KPC编码质粒的特征。

结果

初步调查表明疫情广泛传播,2012年至2015年期间,在维多利亚州大都市和农村地区的35个不同地点鉴定出86株产KPC的肠杆菌科细菌分离株(92%)。对流行病学和基因组数据的初步联合分析将疫情分为不同的医院内传播网络,并确定了KPC传播中心的医疗机构。新病例实时分配到传播网络中,从而能够集中开展感染控制工作。PacBio测序证实了种间质粒传播导致的二级传播网络。贝叶斯传播推断和宿主内多样性分析的结果为全州公共卫生和感染控制指南的制定提供了依据,包括在发现新病例后采取强化接触者筛查等干预措施,以尽量减少未被识别的定植。

结论

实时的流行病学与基因组联合调查对于识别和界定产KPC肠杆菌科细菌的多个传播网络至关重要,而单独的任何一项调查数据都不具有决定性。该调查对于实时指导感染控制措施以及制定全州关于产碳青霉烯酶肠杆菌科细菌监测和管理的公共卫生指南至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce51/5756455/510c9f94a301/peerj-06-4210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验