Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain.
Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena , Humboldtstraße 10, 07743 Jena, Germany.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3314-3323. doi: 10.1021/acsami.7b16508. Epub 2018 Jan 18.
Bacteria-mediated diseases are a global healthcare concern due to the development and spread of antibiotic-resistant strains. Cationic compounds are considered membrane active biocidal agents having a great potential to control bacterial infections, while limiting the emergence of drug resistance. Herein, the versatile and simple layer-by-layer (LbL) technique is used to coat alternating multilayers of an antibacterial aminocellulose conjugate and the biocompatible hyaluronic acid on biocompatible polymer nanoparticles (NPs), taking advantage of the nanosize of these otherwise biologically inert templates. Stable polyelectrolyte-decorated particles with an average size of 50 nm and ζ potential of +40.6 mV were developed after five LbL assembly cycles. The antibacterial activity of these NPs against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli increased significantly when the polycationic aminocellulose was in the outermost layer. The large number of amino groups available on the particle surface, together with the nanosize of the multilayer conjugates, improved their interaction with bacterial membrane phospholipids, leading to membrane disruption, as confirmed by a Langmuir monolayer model, and the 10 logs reduction for both bacteria. The biopolymer decorated NPs were also able to inhibit the biofilm formation of S. aureus and E. coli by 94 and 40%, respectively, without affecting human cell viability. The use of LbL-coated NPs appears to be a promising antibiotic-free alternative for controlling bacterial infections using a low amount of antimicrobial agent.
由于抗生素耐药菌株的出现和传播,细菌介导的疾病是全球医疗保健关注的焦点。阳离子化合物被认为是具有膜活性的杀菌剂,具有控制细菌感染的巨大潜力,同时限制耐药性的出现。在此,采用多功能且简单的层层(LbL)技术,将抗菌氨基纤维素缀合物和生物相容性透明质酸的交替多层涂覆在生物相容性聚合物纳米颗粒(NPs)上,利用这些原本生物惰性模板的纳米尺寸。经过五次 LbL 组装循环后,可得到具有平均尺寸为 50nm 和 ζ 电位为+40.6mV 的稳定聚电解质修饰的颗粒。当聚阳离子氨基纤维素位于最外层时,这些 NPs 对革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌的抗菌活性显著增加。颗粒表面大量可用的氨基与纳米多层缀合物一起,增强了它们与细菌细胞膜磷脂的相互作用,导致膜破裂,这一点通过 Langmuir 单层模型得到证实,对两种细菌的减少量均达到 10 对数。生物聚合物修饰的 NPs 还能够抑制金黄色葡萄球菌和大肠杆菌生物膜的形成,抑制率分别为 94%和 40%,而不影响人细胞的活力。使用 LbL 涂层 NPs 似乎是一种有前途的无抗生素替代方案,可使用低剂量的抗菌剂来控制细菌感染。