Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
Adv Mater. 2018 Feb;30(8). doi: 10.1002/adma.201705441. Epub 2018 Jan 10.
Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni O , Mn O ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g at the current density of 96 mA g , good rate ability (410 mA h g at 1.75 A g ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.
蛋黄壳纳米结构因其在解决锂离子电池中体积变化大、导电性低和锂离子传输扩散路径短等问题方面的明显优势,受到了极大的关注。本文报道了一种通过热解与氧化相结合的方法,将空心过渡金属氧化物(TMO)纳米颗粒(NPs)封装到 B、N 共掺杂石墨纳米管中的通用策略。所制备的 TMO@BNG 表现出 TMO 依赖性的锂离子存储能力,其中 CoO@BNG 纳米管在 96 mA g 的电流密度下表现出最高的锂离子存储容量 1554 mA h g-1,良好的倍率性能(在 1.75 A g-1 时为 410 mA h g-1)和高稳定性(经过 480 次循环后,存储容量保持率几乎为 96%)。本工作强调了在提高 LIBs 存储容量、倍率性能和循环稳定性方面,将具有薄壁的空心 TMO NPs 引入到具有大表面积的 BNG 中的重要性。