Suppr超能文献

用于高效析氧反应的基于Ti64的多尺度晶格电催化剂的3D打印

3D Printing of Multiscale Ti64-Based Lattice Electrocatalysts for Robust Oxygen Evolution Reaction.

作者信息

Guo Binbin, Kang Jiahui, Zeng Tianbiao, Qu Hongqiao, Yu Shixiang, Deng Hui, Bai Jiaming

机构信息

Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.

出版信息

Adv Sci (Weinh). 2022 Aug;9(24):e2201751. doi: 10.1002/advs.202201751. Epub 2022 Jul 20.

Abstract

Electrically assisted water splitting is an endurable strategy for hydrogen production, but the sluggish kinetics of oxygen evolution reaction (OER) extremely restrict the large-scale production of hydrogen. Developing highly efficient and non-precious catalytic materials is essential to accelerate the sluggish kinetics of OER. However, currently used catalyst supports, such as copper foam, suffer from inferior corrosion resistance and structural stability, resulting in the disabled functionality of 3D conductive networks. To this end, a novel 3D freestanding electrode with corrosion-resistant and robust Ti-6Al-4V titanium alloy lattice as the catalyst support is designed via a 3D printing technology of selective laser melting. After the coating of core-shell Cu(OH)2@CoNi carbonate hydroxides (CoNiCH) on the designed lattice, a unique micro/nano-sized hierarchical porous structure is formed, which endows the electrocatalyst with a promising electrocatalytic activity (a low overpotential of 355 mV at 30 mA cm and Tafel slope of 125.3 mV dec ). Computational results indicate that the CoNiCH exhibits optimized electron transfer and the catalytic activity of the Ni site is higher than that of the Co site in the CoNiCH. Therefore, the integration of robust catalyst supports and highly active materials opens up an avenue for reliable and high-performance OER electrocatalysts.

摘要

电辅助水分解是一种可持续的制氢策略,但析氧反应(OER)缓慢的动力学极大地限制了氢气的大规模生产。开发高效且非贵金属催化材料对于加速OER缓慢的动力学至关重要。然而,目前使用的催化剂载体,如泡沫铜,耐腐蚀性能和结构稳定性较差,导致三维导电网络功能失效。为此,通过选择性激光熔化的三维打印技术设计了一种新型的三维独立电极,其以耐腐蚀且坚固的Ti-6Al-4V钛合金晶格作为催化剂载体。在设计的晶格上涂覆核壳结构的Cu(OH)2@羟基碳酸钴镍(CoNiCH)后,形成了独特的微/纳米级分层多孔结构,这赋予了电催化剂有前景的电催化活性(在30 mA cm时过电位低至355 mV,塔菲尔斜率为125.3 mV dec)。计算结果表明,CoNiCH表现出优化的电子转移,且CoNiCH中Ni位点的催化活性高于Co位点。因此,坚固的催化剂载体与高活性材料的结合为可靠且高性能的OER电催化剂开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b3f/9405505/d7010484ed1f/ADVS-9-2201751-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验