Centro de Investigaciones en Optica , A.P. 1-948, Leon, Guanajuato 37150, Mexico.
Universidad Autónoma de Zacatecas , Av. Ramón López Velarde #801, Zacatecas C.P. 98000, Mexico.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3571-3580. doi: 10.1021/acsami.7b16312. Epub 2018 Jan 17.
We for the first time report the incorporation of cobalt into a mesoporous TiO electrode for application in perovskite solar cells (PSCs). The Co-doped PSC exhibits excellent optoelectronic properties; we explain the improvements by passivation of electronic trap or sub-band-gap states arising due to the oxygen vacancies in pristine TiO, enabling faster electron transport and collection. A simple postannealing treatment is used to prepare the cobalt-doped mesoporous electrode; UV-visible spectroscopy, X-ray photoemission spectroscopy, space charge-limited current, photoluminescence, and electrochemical impedance measurements confirm the incorporation of cobalt, enhanced conductivity, and the passivation effect induced in the TiO. An optimized doping concentration of 0.3 mol % results in the maximum power conversion efficiency of 18.16%, 21.7% higher than that of a similar cell with an undoped TiO electrode. Also, the device shows negligible hysteresis and higher stability, retaining 80.54% of the initial efficiency after 200 h.
我们首次报道了将钴掺入介孔 TiO 电极中,用于制备钙钛矿太阳能电池(PSCs)。Co 掺杂的 PSC 表现出优异的光电性能;我们通过钝化由于原始 TiO 中的氧空位而产生的电子陷阱或亚带隙态来解释这些改进,从而实现更快的电子输运和收集。采用简单的后退火处理来制备钴掺杂介孔电极;紫外可见光谱、X 射线光电子能谱、空间电荷限制电流、光致发光和电化学阻抗测量证实了钴的掺入、电导率的提高以及 TiO 中诱导的钝化效应。优化的掺杂浓度为 0.3 mol%时,最大功率转换效率为 18.16%,比具有未掺杂 TiO 电极的类似电池高 21.7%。此外,该器件显示出可忽略的滞后现象和更高的稳定性,在 200 小时后仍保留初始效率的 80.54%。